70 Appendix
ablesx
n
.IfeventBbelongsto
®,
then,accordingtothe
conditions
ofthetheorem,
P
M
(A)=P(A).
(2)
In the case P(A)
=
our theorem
is
already
true. Let now
P(A) >0.
Then
from (2) followstheformula
Pa(B)
=
P
'{
££I
B)
=P(B),
(3)
and
thereforeP(B) and
P
A
(B)
are
twocompletely
additiveset
functions,
coinciding
on
®
;thereforetheymustremainequalto
eachotheroneverysetoftheBorelextensionB®ofthefieldSt
Therefore, in particular,
P(A)=P
A
(A\=i,
whichprovesourtheorem.
Severalothercases inwhichwecanstatethatcertainprob-
abilitiescanassumeonlythevaluesoneandzero,werediscovered
byP.Levy.
See
P.Lriw,SuruntheoremedeM.Khintchine,Bull,
desSci.Math.v.55,1931,pp.
145-160,TheoremII.