QMGreensite_merged

(bbancia) #1

369


sothat


ψ(x,t+!) =

(
1 +

!


i ̄h

H


)
ψ(x,t)+O(!^2 )

=


(
1 −i

!


̄h

V+


i! ̄h
2 m

d^2
dx^2

+O(!^2 )


)
ψ(x,t)

= e−i!V(x)/ ̄h

(
ψ(x,t)+

i! ̄h
2 m

ψ′′(x,t)

)
+O(!^2 ) (24.11)

Nowletswritey=x+η,andexpandψ(y,t)ineq. (24.5)inaTaylorseries


ψ(x,t+!) =


dyG!(x,y)ψ(y,t)

=


dηG!(x,x+η)

[
ψ(x)+ψ′(x)η+

1


2


ψ′′(x)η^2 +...

]
(24.12)

Comparing(24.11)and(24.12)weseethat,tofirstorderin!,thepropagatorG!(x,x+
η)mustsatisfy



dηG!(x,x+η) = e−i!V(x)/ ̄h

dηG!(x,x+η)η = 0

dηG!(x,x+η)η^2 =

i! ̄h
m

(24.13)


Itsalsoclearfrom(24.5)that,inthe!→ 0 limit, thepropagatormustbecomea
deltafunction,i.e.
lim
!→ 0
G!(x,x+η)=δ(η) (24.14)


Therefore, G!(x,x+η)isadelta sequence. We haveseen two examples ofdelta
sequencesinLecture4;oneinvolvedtheintegralofeikxoverafiniterange,theother
wasagaussian.Thegaussiandelta-sequence,togetherwiththefirstoftheconditions
ineq.(24.13),motivatestrying,asanansatz


G!(x,x+η)=e−i!V(x)/ ̄h


A
π

e−Aη

2
(24.15)

whichwillbeadelta-sequenceifA→∞as!→0.Itiseasytocheckthatthisansatz
satisfiesthefirstandsecondconditionsin(24.13).TheconstantAisdeterminedby
thethirdcondition


i! ̄h
m

=



A
π


dηη^2 e−Aη

2

=


1


2 A


(24.16)

Free download pdf