QMGreensite_merged

(bbancia) #1

370 CHAPTER24. THEFEYNMANPATHINTEGRAL


SolvingforA,andrecallingη=x−y,wefinallyhavetofirstorderin!,


G!(x,y)=

( m

2 iπ! ̄h

) 1 / 2
exp

[
i

!


̄h

{
1
2

m

(x−y

!

) 2
−V(x)

}]
(24.17)

TheexpressionaboveforG!(x,y)isnotexact;thereareO(!^2 )corrections. Ifwe
insertthisexpressionintoeq. (24.8),theresultforGT(x,y)willnotbeexacteither:
theproductofT/!termswillgiveanoverallerroroforder!. However,wecanget
theexactresultforGT(x,y)bytakingtheN→∞(!=NT →0)limit


GT(x,y)

= lim
N→∞

∫ (N∏− 1

i=1

dxn

)
G!(x,xN− 1 )G!(xN− 1 ,xN− 2 )...G!(x 1 ,y)

= lim
N→∞

∫ (N∏− 1

i=1

dxn

)(
m
2 iπ! ̄h

)N/ 2
exp

[
i
̄h

∑N

n=1

!


(
1
2

m

(xn−xn− 1 )^2
!^2

−V(xn)

)]
(24.18)

wherewehavedefinedx 0 ≡yandxN ≡x. Wenowintroducethenotationforthe
integraloverallpossiblepaths



Dx(t)≡ lim
N→∞

∫ (N∏− 1

i=1

dxi

)(
m
2 iπ! ̄h

)N− 1 / 2
(24.19)

andnotethatinthe!→ 0 limit


lim
N→∞

∑N

n=1

!


(
1
2

m

(xn−xn− 1 )^2
!^2

−V(xn)

)
=

∫t+T

t

dt

( 1


2


mx ̇^2 −V(x)

)

= S[x(t)] (24.20)

whereS[x(t)]istheactionfunctional definedback inLecture1. Atlastwe have
arrivedattheFeynmanPathIntegral


GT(x,y)=


Dx(t)eiS[x(t)]/ ̄h (24.21)

Inwords,thisequationsaysthattheamplitudeforaparticletopropagatefrompoint
yattimettopointxattimet+T isgivenbytheintegraloverallpossiblepaths
runningbetweenthosetwopoints, witheachpathweightedbythe amplitudeeiS,
whereSistheactionofthegivenpath. Ofcourse,theprecisemeaningof



Dx(t),
thesumoverpaths,mustbegivenintermsofalimit,namely,thelimitofamultiple
integral,asthenumberofintegralsgoestoinfinity.Butrecallthattheprecisemeaning
ofanordinaryintegralisalsointermsofalimit: thelimitofasumoververymany
points,asthenumberofpointstendstoinfinity.

Free download pdf