Nature - USA (2020-06-25)

(Antfer) #1
Nature | Vol 582 | 25 June 2020 | 585

retrograde actin flow to the surrounding and can therefore operate
alternately or even simultaneously. This endows amoeboid cells with
enormous adaptability when migrating in heterogeneous environments.


Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2283-z.



  1. Lämmermann, T. & Sixt, M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin.
    Cell Biol. 21 , 636–644 (2009).

  2. Abercrombie, M., Heaysman, J. E. & Pegrum, S. M. The locomotion of fibroblasts in
    culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell
    Res. 62 , 389–398 (1970).

  3. Liu, Y.-J. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow
    mesenchymal cells. Cell 160 , 659–672 (2015).

  4. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188 ,
    11–19 (2010).

  5. Lämmermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and
    squeezing. Nature 453 , 51–55 (2008).

  6. Bergert, M. et al. Force transmission during adhesion-independent migration. Nat. Cell
    Biol. 17 , 524–529 (2015).

  7. Schmidt, S. & Friedl, P. Interstitial cell migration: integrin-dependent and alternative
    adhesion mechanisms. Cell Tissue Res. 339 , 83–92 (2010).

  8. Hons, M. et al. Chemokines and integrins independently tune actin flow and substrate
    friction during intranodal migration of T cells. Nat. Immunol. 19 , 606–616 (2018).

  9. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility
    without triggering stable integrin adhesiveness in the absence of shear forces.
    Nat. Immunol. 8 , 1076–1085 (2007).
    10. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in
    integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14 , 503–517 (2013).
    11. Le Berre, M., Aubertin, J. & Piel, M. Fine control of nuclear confinement identifies a
    threshold deformation leading to lamina rupture and induction of specific genes. Integr.
    Biol. (Camb.) 4 , 1406–1414 (2012).
    12. Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol.
    11 , 1438–1443 (2009).
    13. Renkawitz, J., Reversat, A., Leithner, A., Merrin, J. & Sixt, M. Micro-engineered “pillar
    forests” to study cell migration in complex but controlled 3D environments. Methods Cell
    Biol. 147 , 79–91 (2018).
    14. Vargas, P., Barbier, L., Sáez, P. J. & Piel, M. Mechanisms for fast cell migration in complex
    environments. Curr. Opin. Cell Biol. 48 , 72–78 (2017).
    15. Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover
    in neuronal growth cones. Nat. Cell Biol. 8 , 215–226 (2006).
    16. Henson, J. H. et al. Two components of actin-based retrograde flow in sea urchin
    coelomocytes. Mol. Biol. Cell 10 , 4075–4090 (1999).
    17. Cramer, L. P. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of
    motile cells. Front. Biosci. 2 , d260–d270 (1997).
    18. Driscoll, M. K. et al. Cell shape dynamics: from waves to migration. PLoS Comput. Biol. 8 ,
    e1002392 (2012).
    19. Howe, J. D., Barry, N. P. & Bretscher, M. S. How do amoebae swim and crawl? PLoS One 8 ,
    e74382 (2013).
    20. Bae, A. J. & Bodenschatz, E. On the swimming of Dictyostelium amoebae. Proc. Natl Acad.
    Sci. USA 107 , E165–E166 (2010).
    21. Mandeville, J. T. H., Lawson, M. A. & Maxfield, F. R. Dynamic imaging of neutrophil
    migration in three dimensions: mechanical interactions between cells and matrix.
    J. Leukoc. Biol. 61 , 188–200 (1997).
    22. Tozluoğlu, M. et al. Matrix geometry determines optimal cancer cell migration strategy
    and modulates response to interventions. Nat. Cell Biol. 15 , 751–762 (2013).
    23. Jankowiak, G., Peurichard, D., Reversat, A., Schmeiser, C. & Sixt, M. Modelling
    adhesion-independent cell migration. Math. Model. Methods Appl. Sci. 30 , 513–537
    (2020).
    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
    published maps and institutional affiliations.


© The Author(s), under exclusive licence to Springer Nature Limited 2020

Control

Talin KO

6–12μm (^24) smoothμm to
Migration
No migration
0
20
40
60
80
100
Talin KO cells (%)
abcd
Cell velocity(μ
m min
–1)
Control Talin KO
6 μm 12 μm 24 μmSmooth 6 μm 12 μm 24 μmSmoot
(^0) h
10
20
30
0
10
20
30
Cell velocity (a.u.)
0 1
Cell
Actin ow
0
5
10
15
20
25
Talin KO
6 μm 12 μm 24 μm
Velocity(μm min
–1)
Channel
zone
**
NS



  • Smooth
    ef g
    31:20
    00:00
    (min:s)Time00:00 07:30 15:00 22:3030:00
    Lifeact-GFP TIRFBright eld
    6 μm 12 μm 24 μm Smooth
    Channel zone smooth
    Lifeact-GFP
    Bright eld
    Channel zone 12 μm
    Lifeact-GFP
    Bright eld
    Channel zone 24 μm
    Lifeact-GFP
    Bright eld
    Channel zone 6 μm
    Lifeact-GFP
    Bright eld
    Channel
    zone
    Serrated Smooth
    5 μm
    6 μm 12 μm 24 μm **
    NS




  • NS *
    Fig. 4 | Force transmission of T cells in varying geometries. a, The channel
    design that is used in b–g. b, The proportion of talin-KO cells migrating in 6-μm
    and 12-μm zones (n = 41) and in the 24-μm zone and the smooth zone (n = 2 2).
    **
    P < 0.0001, Fisher’s exact test. c, Snapshots of control cells (top) and
    talin-KO cells in channels with a varying period. Lifeact-GFP is in red, and
    Hoechst is in cyan. Scale bars, 20 μm. Bottom, tracks are colour-coded for cell
    velocity. Data are representative of four and eight independent experiments,
    respectively. d, The velocity of control (n = 88) and talin-KO (n = 79) cells in
    zones with different periodicity. Data are representative of four and eight
    independent experiments, respectively. Control: P = 0.0234; KO: P = 0.0188,
    P = 0.0013 (6 μm versus 24 μm) and P = 0.001 (24 μm versus smooth),
    *P < 0.0001, otherwise NS, Kruskal–Wallis test followed by post hoc Dunn’s
    test. e, TIRF microscopy of a Lifeact-GFP-expressing talin-KO cell moving from
    the 6-μm zone to the smooth zone. From top to bottom: scheme of the channel,
    colour-coded snapshots every 7.5 min and a kymograph of Lifeact-GFP
    (TIRF is shown in cyan and bright field is shown in grey). Scale bars, 20 μm.
    Representative of three independent experiments. f, Bright-field imaging
    of channel sectors and the corresponding kymograph of the Lifeact-GFP-
    expressing talin-KO cell shown in e during 50 s. The red dashed lines indicate
    cell displacement, and the cyan dashed lines indicate actin retrograde f low.
    Scale bar, 20 μm. g, Actin retrograde f low and cell velocities of talin-KO cells
    in different channel zones. Data are representative of four independent
    experiments. n = 7.
    P = 0.0423 and **P = 0.0036, Kruskal–Wallis test followed
    by post hoc Dunn’s test. Boxes in d and g extend from the 25th to the 75th
    percentile, with the middle line showing the median and the whiskers
    indicating the minimum to maximum values.



Free download pdf