108 algebra De mystif ieD
DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 5
1
2
2
1
8
1
8
(^33)
3
−
65
1
1
65
(^33)
3
x
x
x
x
- −
= −
− ()
()
1
2
2
1
3 2
(^535)
5
15
()
[( )] ()
x
x x
= + =+
−
(^) () ()
[( )] ()
x
x
x
x
x
x
- x
− = + = + =
7 − −−
77
3
2
(^424)
34
8
12
−− ⋅
=⋅
=
8
12 8128 12
1
7
11
7
1
()xxxx() ()x 7
y
x
x
y
x
y
x
y
−
−
− −
−
−
−
====
3
4
(^646)
36
24
18
1
1
24
18
() 1
() xxyx
yy
(^241824) x
18 18
24
11
1
÷=⋅ =
The last expression can be simplified more quickly using Property 8
followed by Property 3.
y
x
y
x
y
x
−
−
− −−
−−
−−
−−
==
3
4
(^636)
46
36
46
()
()
()()
()( ))=
y
x
18
24
PRACTICE
Simplify and eliminate any negative exponent.
- (xy^3 )^2 =
- (3x)−3 =
- (2x)^4 =
- (3(x − 4))^2 =
- 6(2x)^3 =
- 6y^2 (3y^4 )^2 =
- (5x^2 y^4 z^6 )^2 =
8.^42
3
y
=
9.^2
9
3
x−
=
−
PRACTICE
Simplify and eliminate any negative exponent.
- (
PRACTICE
Simplify and eliminate any negative exponent.