Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1

108 algebra De mystif ieD


DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 5

1
2

2
1

8
1

8

(^33)
3







65
1
1
65
(^33)
3
x
x
x
x





  • 

    
    = −


  • − ()
    ()
    1
    2
    2
    1
    3 2
    (^535)
    5
    15
    ()
    [( )] ()
    x
    x x









  •  = + =+

    (^) () ()
    [( )] ()
    x
    x
    x
    x
    x
    x



  • x





    −  = + = + =
    7 − −−
    77
    3
    2
    (^424)
    34
    8
    12
    −− ⋅


  • =⋅




  • =




  • 8
    12 8128 12
    1
    7
    11
    7
    1
    ()xxxx() ()x 7
    y
    x
    x
    y
    x
    y
    x
    y


    − −








     ====
    3
    4
    (^646)
    36
    24
    18
    1
    1
    24
    18
    () 1
    () xxyx
    yy
    (^241824) x
    18 18
    24
    11
    1
    ÷=⋅ =
    The last expression can be simplified more quickly using Property 8
    followed by Property 3.
    y
    x
    y
    x
    y
    x


    − −−
    −−
    −−
    −−





     ==
    3
    4
    (^636)
    46
    36
    46
    ()
    ()
    ()()
    ()( ))=
    y
    x
    18
    24
    PRACTICE
    Simplify and eliminate any negative exponent.





  1. (xy^3 )^2 =

  2. (3x)−3 =

  3. (2x)^4 =

  4. (3(x − 4))^2 =

  5. 6(2x)^3 =

  6. 6y^2 (3y^4 )^2 =

  7. (5x^2 y^4 z^6 )^2 =
    8.^42


3
y






 =

9.^2
9


3
x−







=


PRACTICE
Simplify and eliminate any negative exponent.


  1. (


PRACTICE
Simplify and eliminate any negative exponent.
Free download pdf