Algebra Demystified 2nd Ed

(Marvins-Underground-K-12) #1
Chapter 5 e X P O N e N T S a N D r O O T S 109

DeMYSTiFieD / algebra DeMYSTiFieD / HuttenMuller / 000-0 / Chapter 5


  1. ()
    x
    x


 +




−  =


82
4

3


  1. ()x
    y


 +




 =



3 2 −
4

3

✔SOLUTIONS



  1. (xy^3 )^2 = x^2 (y^3 )^2 = x^2 y^6

  2. ()
    ()


3 1
3

1
3

1
27

3

x xx (^3333) x
− ===



  1. (2x)^4 = 24 x^4 = 16 x^4

  2. (3(x − 4))^2 = 32 (x − 4)^2 = 9(x − 4)^2

  3. 6(2x)^3 = 6(2^3 x^3 ) = 6(8x^3 ) = 48 x^3

  4. 6y^2 (3y^4 )^2 = 6 y^2 (3^2 (y^4 )^2 ) = 6 y^2 (9y^8 ) = 54 y^10

  5. (5x^2 y^4 z^6 )^2 = 52 (x^2 )^2 (y^4 )^2 (z^6 )^2 = 25 x^4 y^8 z^12
    8.^44264


(^33)
yy^23 y^6





 ==()


9.^2
9


9
2

9
8

(^33)
3
3
x
xx





= − = −
− ()()



  1. () ()
    [( )] ()


x
x

x
x

x
x

 +




 = + = +

8 −
88

2
4

(^343)
23
12
6



  1. () [( )]
    ()


x ()()
y

x
y

 + x




 = + = +



− −−
−−

332 3 −
4

(^323)
43
2 (()
()()
− ()
−− =
(^3) +
43
6
12
3
y
x
y


Multiplying/Dividing with Exponents


When multiplying (or dividing) quantities that have exponents, we use expo-
nent properties to simplify each factor (or numerator and denominator) and
then we multiply (or divide).
Free download pdf