5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 14:46

194 STEP 4. Review the Knowledge You Need to Score High


Step 2:
dA
dx

=


3


2


( 2 x− 9 )−^1 /^2 (2)(9−x)

+(−1)(3)(2x−9)^1 /^2.

=
3 ( 9 −√x)− 3 ( 2 x− 9 )
2 x− 9

=
√^54 −^9 x
2 x− 9

Step 3: Set
dA
dx
= 0 ⇒ 54 − 9 x=0;x= 6.
dA
dx

is undefined atx=

9


2


. The


critical numbers are

9


2


and 6.

Step 4: First Derivative Test:

undef. undef. + 0 –
9/2 6
incr. decr.

A′
A

Thus atx=6, the areaAis a
relative maximum.

A(6)=

(
1
2

)
(3)(


2(6)−9)(9−6)

= 9


3
Step 5: Check the endpoints. The
domain ofAis [9/2, 9].
A(9/2)=0; andA(9)=0.
Therefore, the maximum area of
an isosceles triangle with the
perimeter of 18 cm is 9


3cm^2.
(Note that atx=6, the triangle is
an equilateral triangle.)


  1. Step 1: Letxbe the number and


1


x

be its
reciprocal.
Step 2: s=x+

1


x
with 0<x<2.

Step 3:
ds
dx

= 1 +(−1)x−^2 = 1 −

1


x^2
Step 4: Set
ds
dx

= 0 ⇒ 1 −


1


x^2

= 0


⇒x=±1, since the domain is
(0, 2), thusx=1.

ds
dx
is defined for allxin (0, 2).
Critical number isx=1.
Step 5: Apply the Second Derivative Test:
d^2 s
dx^2

=


2


x^3
and
d^2 s
dx^2

∣∣

∣x= 1 =2.
Thus atx=1,sis a relative
minimum. Since it is the only
relative extremum, atx=1, it is
the absolute minimum.


  1. (See Figure 9.6-5.)


x

x

xx

x

x

x
x x

x x

xx

x

x

15 – 2 x

8 – 2 x

Figure 9.6-5

Step 1: Volume:V=x(8− 2 x)(15− 2 x)
with 0≤x≤4.
Step 2: Differentiate: Rewrite as
V = 4 x^3 − 46 x^2 + 120 x
dV
dx

= 12 x^2 − 92 x+120.

Step 3: SetV= 0 ⇒ 12 x^2 − 92 x+ 120 = 0
⇒ 3 x^2 − 23 x+ 30 =0. Using the
quadratic formula, you havex= 6
orx=

5


3


and
dV
dx

is defined for all
real numbers.
Step 4: Apply the Second Derivative Test:
d^2 V
dx^2
= 24 x−92;

d^2 V
dx^2


∣∣
∣x= 6 =52 and

d^2 V
dx^2


∣∣
∣x= 5
3

=− 52.

Free download pdf