MA 3972-MA-Book April 11, 2018 14:46194 STEP 4. Review the Knowledge You Need to Score High
Step 2:
dA
dx=
3
2
( 2 x− 9 )−^1 /^2 (2)(9−x)+(−1)(3)(2x−9)^1 /^2.=
3 ( 9 −√x)− 3 ( 2 x− 9 )
2 x− 9=
√^54 −^9 x
2 x− 9Step 3: Set
dA
dx
= 0 ⇒ 54 − 9 x=0;x= 6.
dA
dxis undefined atx=9
2
. The
critical numbers are9
2
and 6.Step 4: First Derivative Test:undef. undef. + 0 –
9/2 6
incr. decr.A′
AThus atx=6, the areaAis a
relative maximum.A(6)=(
1
2)
(3)(√
2(6)−9)(9−6)= 9√
3
Step 5: Check the endpoints. The
domain ofAis [9/2, 9].
A(9/2)=0; andA(9)=0.
Therefore, the maximum area of
an isosceles triangle with the
perimeter of 18 cm is 9√
3cm^2.
(Note that atx=6, the triangle is
an equilateral triangle.)- Step 1: Letxbe the number and
1
xbe its
reciprocal.
Step 2: s=x+1
x
with 0<x<2.Step 3:
ds
dx= 1 +(−1)x−^2 = 1 −1
x^2
Step 4: Set
ds
dx= 0 ⇒ 1 −
1
x^2= 0
⇒x=±1, since the domain is
(0, 2), thusx=1.ds
dx
is defined for allxin (0, 2).
Critical number isx=1.
Step 5: Apply the Second Derivative Test:
d^2 s
dx^2=
2
x^3
and
d^2 s
dx^2∣∣
∣
∣x= 1 =2.
Thus atx=1,sis a relative
minimum. Since it is the only
relative extremum, atx=1, it is
the absolute minimum.- (See Figure 9.6-5.)
xxxxxxx
x xx xxxxx15 – 2 x8 – 2 xFigure 9.6-5Step 1: Volume:V=x(8− 2 x)(15− 2 x)
with 0≤x≤4.
Step 2: Differentiate: Rewrite as
V = 4 x^3 − 46 x^2 + 120 x
dV
dx= 12 x^2 − 92 x+120.Step 3: SetV= 0 ⇒ 12 x^2 − 92 x+ 120 = 0
⇒ 3 x^2 − 23 x+ 30 =0. Using the
quadratic formula, you havex= 6
orx=5
3
and
dV
dxis defined for all
real numbers.
Step 4: Apply the Second Derivative Test:
d^2 V
dx^2
= 24 x−92;d^2 V
dx^2∣
∣∣
∣x= 6 =52 andd^2 V
dx^2∣
∣∣
∣x= 5
3