MA 3972-MA-Book May 8, 2018 13:52Integration 237Step 3: Rewrite:∫
√^1
9 −u^2du
2=
1
2
∫
√du
32 −u^2.
Step 4: Integrate:1
2
sin−^1(
u
3)
+C.Step 5: Replaceu:1
2
sin−^1(
2 x
3)
+C.Step 6: Differentiate and Check:1
2
1
√
1 −(
2 x
3) 2 ·2
3
=
1
3
1
√
1 −
4 x^2
9=
√^1
9√^1
1 −
4 x^2
9=
√^1
9(
1 −
4 x^2
9)=
1
√
9 − 4 x^2.
Example 2
Evaluate∫
1
x^2 + 2 x+ 5
dx.Step 1: Rewrite:∫
1
(x^2 + 2 x+ 1 )+ 4=
∫
1
(x+ 1 )^2 + 22dx=∫
1
22 +(x+ 1 )^2dx.
Letu=x+1.
Step 2: Differentiate:du=dx.Step 3: Rewrite:∫
1
22 +u^2du.Step 4: Integrate:1
2
tan−^1(
u
2)
+C.Step 5: Replaceu:1
2
tan−^1(
x+ 1
2)
+C.Step 6: Differentiate and Check:(
1
2) 1(
1
2)1 +[(x+1)/ 2 ]^2=
(
1
4)
1
1 +(x+ 1 )^2 / 4=(
1
4)
4
4 +(x+ 1 )^2=
1
x^2 + 2 x+ 5.
TIP • If the problem gives you that the diameter of a sphere is 6 and you are using formulas
such asv=4
3
πr^3 ors= 4 πr^2 , do not forget thatr=3.