MA 3972-MA-Book May 8, 2018 13:52238 STEP 4. Review the Knowledge You Need to Score High
U-Substitution and Logarithmic and Exponential Functions
Example 1
Evaluate∫
x^3
x^4 − 1
dx.Step 1: Letu=x^4 −1.Step 2: Differentiate:du= 4 x^3 dx⇒
du
4
=x^3 dx.Step 3: Rewrite:∫
1
udu
4=
1
4
∫
1
u
du.Step 4: Integrate:1
4
ln|u|+C.Step 5: Replaceu:1
4
ln|x^4 − 1 |+C.Step 6: Differentiate and Check:(
1
4)
1
x^4 − 1(
4 x^3)
=
x^3
x^4 − 1.
Example 2
Evaluate∫
sinx
cosx+ 1
dx.Step 1: Letu=cosx+1.
Step 2: Differentiate:du=−sinxdx⇒−du=sinxdx.Step 3: Rewrite:∫
−du
u=−
∫
du
u.
Step 4: Integrate:−ln|u|+C.
Step 5: Replaceu:−ln∣∣
cosx+ 1∣∣
+C.Step 6: Differentiate and Check:−(
1
cosx+ 1)
(−sinx)=
sinx
cosx+ 1.
Example 3
Evaluate∫
x^2 + 3
x− 1
dx.Step 1: Rewrite
x^2 + 3
x− 1
=x+ 1 +4
x− 1
; by dividing (x^2 +3) by (x−1).
∫
x^2 + 3
x− 1
dx=∫ (
x+ 1 +4
x− 1)
dx=∫
(x+1)dx+∫
4
x− 1
dx=
x^2
2
+x+ 4∫
1
x− 1
dx
Letu=x−1.
Step 2: Differentiate:du=dx.