5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 15:57

Def inite Integrals 265

12.7 Solutions to Practice Problems


Part A The use of a calculator is not
allowed.

1.


∫ 0

− 1

(
1 +x−x^3

)
dx

=x+
x^2
2


x^4
4

] 0

− 1
= 0 −

[
(−1)+

(−1)^2


2



(−1)^4


4


]

=


3


4



  1. Letu=x− 2 du=dx.

    (x−2)^1 /^2 dx=



u^1 /^2 du

=


2 u^1 /^2
3

+C


=


2


3


(x−2)^3 /^2 +C

Thus,

∫ 11

6

(x−2)^1 /^2 dx=

2


3


(x−2)^3 /^2

] 11
6

=

2


3


[
(11−2)^3 /^2

−(6−2)^3 /^2

]

=


2


3


(27−8)=


38


3


.



  1. Letu=t+1;du=dtandt=u−1.


Rewrite:


t
t+ 1
dt=


u− 1
u
du

=


∫ (
1 −

1


u

)
du

=u−ln|u|+C
=t+ 1 −ln|t+ 1 |+C
∫ 3

1

t
t+ 1
dt=[t+ 1 −ln|t+ 1 |]^31

=[(3)+ 1 −ln| 3 + 1 |]
−((1)+ 1 −ln| 1 + 1 |)

= 4 −ln 4− 2 +ln 2
= 2 −ln 4+ln 2
= 2 −ln(2)^2 +ln 2
= 2 −2ln2+ln 2
= 2 −ln 2.


  1. Setx− 3 =0;x=3.


∣∣
x− 3

∣∣
=

{
(x−3) ifx≥ 3
−(x−3) ifx< 3
∫ 6

0

∣∣
x− 3

∣∣
dx=

∫ 3

0

−(x−3)dx

+


∫ 6

3

(x−3)dx

=


[
−x^2
2

+ 3 x

] 3

0

+


[
x^2
2

− 3 x

] 6

3

=

(

(3)^2


2


+3(3)


)
− 0

+


(
62
2

−3(6)


)

(
32
2

−3(3)


)

=


9


2


+


9


2


= 9


5.


∫k

0

(6x−1)dx= 3 x^2 −x

]k
0 =^3 k

(^2) −k
Set 3k^2 −k= 4 ⇒ 3 k^2 −k− 4 = 0
⇒(3k−4)(k+1)= 0
⇒k=


4


3


ork=−1.

Verify your results by evaluating
∫ 4 / 3

0

(6x−1)dxand

∫− 1

0

(6x−1)dx.
Free download pdf