MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 265
12.7 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.
1.
∫ 0
− 1
(
1 +x−x^3
)
dx
=x+
x^2
2
−
x^4
4
] 0
− 1
= 0 −
[
(−1)+
(−1)^2
2
−
(−1)^4
4
]
=
3
4
- Letu=x− 2 du=dx.
∫
(x−2)^1 /^2 dx=
∫
u^1 /^2 du
=
2 u^1 /^2
3
+C
=
2
3
(x−2)^3 /^2 +C
Thus,
∫ 11
6
(x−2)^1 /^2 dx=
2
3
(x−2)^3 /^2
] 11
6
=
2
3
[
(11−2)^3 /^2
−(6−2)^3 /^2
]
=
2
3
(27−8)=
38
3
.
- Letu=t+1;du=dtandt=u−1.
Rewrite:
∫
t
t+ 1
dt=
∫
u− 1
u
du
=
∫ (
1 −
1
u
)
du
=u−ln|u|+C
=t+ 1 −ln|t+ 1 |+C
∫ 3
1
t
t+ 1
dt=[t+ 1 −ln|t+ 1 |]^31
=[(3)+ 1 −ln| 3 + 1 |]
−((1)+ 1 −ln| 1 + 1 |)
= 4 −ln 4− 2 +ln 2
= 2 −ln 4+ln 2
= 2 −ln(2)^2 +ln 2
= 2 −2ln2+ln 2
= 2 −ln 2.
- Setx− 3 =0;x=3.
∣∣
x− 3
∣∣
=
{
(x−3) ifx≥ 3
−(x−3) ifx< 3
∫ 6
0
∣∣
x− 3
∣∣
dx=
∫ 3
0
−(x−3)dx
+
∫ 6
3
(x−3)dx
=
[
−x^2
2
+ 3 x
] 3
0
+
[
x^2
2
− 3 x
] 6
3
=
(
−
(3)^2
2
+3(3)
)
− 0
+
(
62
2
−3(6)
)
−
(
32
2
−3(3)
)
=
9
2
+
9
2
= 9
5.
∫k
0
(6x−1)dx= 3 x^2 −x
]k
0 =^3 k
(^2) −k
Set 3k^2 −k= 4 ⇒ 3 k^2 −k− 4 = 0
⇒(3k−4)(k+1)= 0
⇒k=
4
3
ork=−1.
Verify your results by evaluating
∫ 4 / 3
0
(6x−1)dxand
∫− 1
0
(6x−1)dx.