MA 3972-MA-Book April 11, 2018 15:57
266 STEP 4. Review the Knowledge You Need to Score High
- Letu= 1 +cosx;du=−sinxdxor
−du=sinxdx.
∫
sinx
√
1 +cosx
dx=
∫
− 1
√
u
(du)
=−
∫
1
u^1 /^2
du
=−
∫
u−^1 /^2 du
=−
u^1 /^2
1 / 2
+C
=− 2 u^1 /^2 +C
=−2(1+cosx)^1 /^2 +C
∫π
0
√sinx
1 +cosx
dx=−2(1+cosx)^1 /^2
]π
0
=− 2
[
(1+cosπ)^1 /^2
−(1+cos 0)^1 /^2
]
=− 2
[
0 − 21 /^2
]
= 2
√
2
- Letu= 4 x;du= 4 dxor
du
4
=dx.
∫
g(4x)dx=
∫
g(u)
du
4
=
1
4
∫
g(u)du
=
1
4
f(u)+C
=
1
4
f(4x)+C
∫ 2
1
g(4x)dx=
1
4
f(4x)]^21
=
1
4
f(4(2))−
1
4
f(4(1))
=
1
4
f(8)−
1
4
f(4)
8.
∫ln 3
ln 2
10 exdx= 10 ex
]ln 3
ln 2
= 10
[(
eln 3
)
−
(
eln 2
)]
=10(3−2)= 10
- Letu=t+3;du=dt.
∫
1
t+ 3
dt=
∫
1
u
du=ln|u|+C
=ln|t+ 3 |+C
∫e 2
e
1
t+ 3
dt=ln|t+ 3 |]e
2
e
=ln (e^2 +3)−ln(e+3)
=ln
(
e^2 + 3
e+ 3
)
- f′(x)=tan^2 x;
f′
(
π
6
)
=tan^2
(
π
6
)
=
(
1
√
3
) 2
=
1
3
- Letu=x^2 ;du= 2 xdxor
du
2
=xdx.
∫
4 xex
2
dx= 4
∫
eu
(
du
2
)
= 2
∫
eudu= 2 eu+c= 2 ex^2 +C
∫ 1
− 1
4 xex^2 dx= 2 ex^2
] 1
− 1
= 2
[
e(1)
2
−e(−1)
2 ]
=2(e−e)= 0
Note thatf(x)= 4 xex^2 is an odd function.
Thus,
∫a
−a
f(x)dx=0.
12.
∫π
−π
(
cosx−x^2
)
dx=sinx−
x^3
3
]π
−π
=
(
sinπ−
π^3
3
)
−
(
sin(−π)−
(−π)^3
3
)
=−
π^3
3
−
(
0 −
−π^3
3
)
=−
2 π^3
3