Integration 209Differentiation Formulas (cont.): Integration Formulas (cont.):10.
d
dx
(lnx)=1
x10.
∫
1
x
dx=ln|x|+C11.d
dx
(ex)=ex 11.∫
exdx=ex+C12.
d
dx
(ax)=(lna)ax 12.∫
axdx=
ax
lna
+Ca>0,a/= 113.
d
dx
(sin−^1 x)=
√^1
1 −x^213.
∫
√^1
1 −x^2dx=sin−^1 x+C14.
d
dx
(tan−^1 x)=1
1 +x^214.
∫
1
1 +x^2
dx=tan−^1 x+C15.
d
dx
(sec−^1 x)=1
|x|√
x^2 − 115.
∫
1
|x|√
x^2 − 1dx=sec−^1 x+CMore Integration Formulas:16.∫
tanxdx=ln∣∣
secx∣∣
+Cor −ln∣∣
cosx∣∣
+C17.∫
cotxdx=ln∣
∣sinx
∣
∣+Cor −ln
∣
∣cscx
∣
∣+C18.
∫
secxdx=ln∣∣
secx+tanx∣∣
+C19.∫
cscxdx=ln∣
∣cscx−cotx
∣
∣+C20.
∫
lnxdx=xln|x|−x+C21.∫
1
√
a^2 −x^2dx=sin−^1(x
a)
+C22.
∫
1
a^2 +x^2
dx=1
a
tan−^1(x
a)
+C23.
∫
1
x√
x^2 −a^2dx=1
a
sec−^1∣
∣∣x
a∣
∣∣+Cor^1
a
cos−^1∣
∣∣a
x∣
∣∣+C24.
∫
sin^2 xdx=
x
2−
sin(2x)
4
+C.Note: sin^2 x=
1 −cos 2x
2Note: After evaluating an integral, always check the result by taking the derivative of the
answer (i.e., taking the derivative of the antiderivative).TIP • Remember that the volume of a right-circular cone isv=^1
3
πr^2 h, whereris the radius
of the base andhis the height of the cone.