210 STEP 4. Review the Knowledge You Need to Score High
Evaluating IntegralsINTEGRAL REWRITE ANTIDERIVATIVE
∫
x^3 dx
x^4
4+C
∫
dx∫
1 dx x+C
∫
5 dx 5 x+C∫ √
xdx∫
x^1 /^2 dx
x^3 /^2
3 / 2
+Cor
2 x^3 /^2
3+C
∫
x^5 /^2 dx
x^7 /^2
7 / 2
+Cor
2 x^7 /^2
7+C
∫
1
x^2
dx∫
x−^2 dx
x−^1
− 1
+Cor− 1
x+C
∫
1√ (^3) x 2 dx
∫
1
x^2 /^3
dx=
∫
x−^2 /^3 dx
x^1 /^3
1 / 3
+Cor 3^3
√
x+C∫
x+ 1
x
dx∫ (
1 +1
x)
dx x+ln|x|+C∫
x(x^5 +1)dx∫
(x^6 +x)dx
x^7
7+
x^2
2+C
Example 1
Evaluate∫
(x^5 − 6 x^2 +x−1)dx.Applying the formula∫
xndx=
xn+^1
n+ 1
+C,n/=−1.
∫
(x^5 − 6 x^2 +x−1)dx=x^6
6
− 2 x^3 +x^2
2
−x+CExample 2
Evaluate∫ (
√
x+1
x^3)
dx.Rewrite∫ (√
x+1
x^3)
dxas∫ (
x^1 /^2 +x−^3)
dx=
x^3 /^2
3 / 2+
x−^2
− 2+C
=
2
3
x^3 /^2 −1
2 x^2