Integration 215Step 3. Rewrite:
∫
u^2 /^3
du
2=
1
2
∫
u^2 /^3 du.Step 4. Integrate:
1
2
(
u^5 /^3
5 / 3)
+C=
3 u^5 /^3
10+C.
Step 5. Replaceu:
3 ( 2 x− 5 )^5 /^3
10
+C.
Step 6. Differentiate and Check:
(
3
10)(
5
3)
( 2 x− 5 )^2 /^3 (2)=( 2 x− 5 )^2 /^3.Example 4
Evaluate
∫
x^2
(x^3 − 8 )^5dx.Step 1. Letu=x^3 −8.
Step 2. Differentiate:du= 3 x^2 dx⇒
du
3
=x^2 dx.
Step 3. Rewrite:
∫
1
u^5du
3=
1
3
∫
1
u^5
du=1
3
∫
u−^5 du.Step 4. Integrate:
1
3
(
u−^4
− 4)
+C.Step 5. Replaceu:
1
− 12
(
x^3 − 8)− 4
+Cor− 1
12 (x^3 − 8 )^4+C.
Step 6. Differentiate and Check:
(
−1
12
)
(− 4 )(
x^3 − 8)− 5 (
3 x^2)
=
x^2
(x^3 − 8 )^5.
U-Substitution and Trigonometric Functions
Example 1
Evaluate
∫
sin 4xdx.Step 1. Letu= 4 x.
Step 2. Differentiate:du= 4 dxor
du
4
=dx.
Step 3. Rewrite:
∫
sinu
du
4=
1
4
∫
sinudu.Step 4. Integrate:
1
4
(−cosu)+C=−1
4
cosu+C.Step 5. Replaceu:−
1
4
cos( 4 x)+C.Step 6. Differentiate and Check:
(
−1
4
)
(−sin 4x)( 4 )=sin 4x.