Definite Integrals 247Example 1
Evaluate
∫∞11
xdx.∫∞
11
x
dx=limk→∞∫k11
x
dx=limk→∞[lnx]k 1 =limk→∞(lnk)=∞so the integral diverges.Example 2
Evaluate
∫∞−∞xe−x^2 dx.Since both limits of integration are infinite, consider the sum of the improper inte-
grals
∫∞−∞xe−x
2
dx=∫ 0−∞xe−x
2
dx+∫∞0xe−x
2
dx. This sum is the sum of the limitslimk→−∞
∫ 0kxe−x^2 dx+limc→∞∫c0xe−x^2 dx=klim→−∞[
−1
2
e−x^2] 0k+limc→∞[
−1
2
e−x^2]c0=
limk→−∞
[
−1
2
+
1
2
e−k
2]
+limc→∞[
−1
2
e−c
2
+1
2
]
=−1
2
+
1
2
= 0 .Since the limit exists, the integralconverges and
∫∞−∞xe−x^2 dx=0.Infinite Discontinuities
If the function has an infinite discontinuity at one of the limits of integration, then
∫b
af(x)dx=liml→b−∫laf(x)dxor∫baf(x)dx=liml→a+∫blf(x)dx. If an infinite discontinu-ity occurs atx=cwithin the interval of integration (a,b), then the integral can be broken
into sections at the discontinuity and the sum of the two improper integrals can be found.
∫b
af(x)dx=∫caf(x)dx+∫bcf(x)dx=limk→c−∫kaf(x)dx+liml→c+∫blf(x)dxExample
Evaluate
∫π/ 20√cosx
1 −sinxdx.Sincef(x)=
√cosx
1 −sinx
has an infinite discontinuity atx=
π
2
, the integral is improper.Evaluate
∫π/ 20cosx
√
1 −sinxdx = klim→π/ 2 −∫k0cosx
√
1 −sinxdx = klim→π/ 2 −[
− 2√
1 −sinx]k
0=
klim→π/ 2 −
[
− 2√
1 −sink+ 2]
= 2 .Since the limit exists,∫π/ 20cosx
√
1 −sinxdx=2.