Areas, Volumes, and Arc Lengths 263The area under the curve usingnrectangles of equal length is approximately:∑ni= 1(area of rectangle)=⎧
⎪⎪⎪
⎪⎪⎪
⎪⎪⎨⎪⎪⎪
⎪⎪⎪
⎪⎪⎩∑n
i= 1f(xi− 1 )Δxleft-endpoint rectangles∑n
i= 1f(xi)Δxright-endpoint rectangles∑n
i= 1f(
xi+xi− 1
2)
Δxmidpoint rectangleswhereΔx=
b−a
n
anda=x 0 <x 1 <x 2 <···<xn=b.If f is increasing on [a,b], then left-endpoint rectangles are inscribed rectangles and
the right-endpoint rectangles are circumscribed rectangles. Iffis decreasing on [a,b], then
left-endpoint rectangles are circumscribed rectangles and the right-endpoint rectangles are
inscribed. Furthermore,
∑n
i= 1inscribed rectangle≤area under the curve≤∑ni= 1circumscribed rectangle.Example 1
Find the approximate area under the curve of f(x)=x^2 +1 fromx=0tox=2, using
4 left-endpoint rectangles of equal length. (See Figure 12.2-2.)
I IIIIIIVy(2,5)
f(x)0 0.5 1 21.5 xFigure 12.2-2LetΔxibe the length ofith rectangle. The lengthΔxi=
2 − 0
4
=
1
2
;xi− 1 =1
2
(i−1).Area under the curve≈
∑^4
i= 1f(xi− 1 )Δxi=∑^4
i= 1((
1
2
(i−1)) 2
+ 1)(
1
2)
.Enter
∑((
( 0 .5(x−1))^2 + 1
)
∗ 0 .5,x,1,4)
and obtain 3.75.