264 STEP 4. Review the Knowledge You Need to Score High
Or, find the area of each rectangle:Area of RectI=(f(0))Δx 1 =(1)(
1
2)
=1
2
.
Area of RectII= f(0.5)Δx 2 =((0.5)^2 +1)(
1
2)
= 0. 625.Area of RectIII= f(1)Δx 3 =(1^2 +1)(
1
2)
= 1.Area of RectIV= f(1.5)Δx 4 =(1. 52 +1)(
1
2)
= 1. 625.Area of (RectI+RectII+RectIII+RectIV)= 3. 75.
Thus, the approximate area under the curve off(x) is 3.75.
Example 2
Find the approximate area under the curve off(x)=√
xfromx=4tox=9 using 5 right-
endpoint rectangles. (See Figure 12.2-3.)0IIIIII IVVxy f(x) =456789√ xFigure 12.2-3LetΔxi be the length ofith rectangle. The lengthΔxi =9 − 4
5
=1; xi= 4 +(1)i =
4 +i.Area of RectI= f(x 1 )Δx 1 = f(5)(1)=√
5.
Area of RectII= f(x 2 )Δx 2 = f(6)(1)=√
6.Area of RectIII= f(x 3 )Δx 3 = f(7)(1)=√
7.
Area of RectIV= f(x 4 )Δx 4 = f(8)(1)=√
8.Area of Rectv= f(x 5 )Δx 5 = f(9)(1)=√
9 = 3.
∑^5i= 1(Area of RectI)=√
5 +√
6 +√
7 +√
8 + 3 = 13. 160.