Areas, Volumes, and Arc Lengths 265Or, using
∑
notation:∑^5
i= 1f(xi)Δxi=∑^5i= 1f(4+i)(1)=∑^5i= 1√
4 + 1.Enter
∑(√
( 4 +x),x,1,5
)
and obtain 13.160.Thus the area under the curve is approximately 13.160.
Example 3
The functionfis continuous on [1, 9] and f >0. Selected values offare given below:
x 1 2 3 4 5 6 7 8 9
f(x) 1 1.41 1.73 2 2.37 2.45 2.65 2.83 3Using 4 midpoint rectangles, approximate the area under the curve off forx=1tox=9.
(See Figure 12.2-4.)
I
II
III IV101232 3 45 67 89yxfFigure 12.2-4LetΔxibe the length ofith rectangle. The lengthΔxi=
9 − 1
4
= 2.
Area of RectI= f(2)(2)=(1.41)2= 2. 82.Area of RectII= f(4)(2)=(2)2= 4.Area of RectIII= f(6)(2)=(2.45)2= 4. 90.Area of RectIV= f(8)(2)=(2.83)2= 5. 66.Area of (RectI+RectII+RectIII+RectIV)= 2. 82 + 4 + 4. 90 + 5. 66 = 17 .38.
Thus the area under the curve is approximately 17.38.