286 STEP 4. Review the Knowledge You Need to Score High
About a linex=h:V=π∫ba[
(f(x)−h)^2 −(g(x)−h)^2]
dx.About a liney=k:V=π∫dc[
(p(y)−k)^2 −(q(y)−k)^2]
dy.Example 1
Using the Washer Method, find the volume of the solid generated by revolving the region
bounded byy=x^3 andy=xin the first quadrant about thex-axis.Step 1. Draw a sketch. (See Figure 12.4-12.)y0 xy =xy =x^3(1,1)Figure 12.4-12To find the points of intersection, setx=x^3 ⇒x^3 −x=0orx(x^2 −1)=0, or
x=−1, 0, 1. In the first quadrantx=0, 1.
Step 2. Determine the outer and inner radii of a washer whose outer radius=x, and inner
radius=x^3.
Step 3. Set up an integral.V=∫ 10[
x^2 −(
x^3) 2 ]
dxStep 4. Evaluate the integral.V=
∫ 10(
x^2 −x^6)
dx=π[
x^3
3−
x^7
7] 10=π(
1
3−
1
7
)
=
4 π
21Verify your result with a calculator.