314 STEP 4. Review the Knowledge You Need to Score High
(a) Displacement=∫t 2t 1v(t)dt=
∫ 60(t^2 + 3 t−10)dt=
t^3
3+
3 t^2
2
− 10 t] 6
0= 66.
(b) Total Distance Traveled=∫t 2t 1∣∣
v(t)∣∣
dt=
∫ 60|t^2 + 3 t− 10 |dt.Lett^2 + 3 t− 10 = 0 ⇒(t+5) (t−2)= 0 ⇒t=−5ort= 2|t^2 + 3 t− 10 |={
−(
t^2 + 3 t− 10)
if 0≤t≤ 2
t^2 + 3 t− 10 ift> 2
∫ 60|t^2 + 3 t− 10 |dt=∫ 20−(t^2 + 3 t−10)dt+∫ 62(t^2 + 3 t−10)dt=
[
−t^3
3−
3 t^2
2
+ 10 t] 20+
[
t^3
3+
3 t^2
2
− 10 t] 62=34
3
+
232
3
=
266
3
≈ 88. 667.
The total distance traveled by the particle is266
3
or approximately 88.667.Example 3
The velocity function of a moving particle on a coordinate line isv(t)=t^3 − 6 t^2 + 11 t−6.
Using a calculator, find (a) the displacement by the particle during 1≤t≤4, and (b) the
total distance traveled by the particle during 1≤t≤4.(a) Displacement=∫t 2t 1v(t)dt=
∫ 41(t^3 − 6 t^2 + 11 t−6)dt.Enter∫ (
x^3 − 6 x^2 + 11 x−6,x,1,4)
and obtain9
4
.
(b) Total Distance Traveled=∫t 2t 1∣
∣v(t)
∣
∣dt.Entery 1 =x∧ 3 − 6 x∧ 2 + 11 x−6 and use the [Zero] function to obtainx-intercepts at
x=1, 2, 3.|v(t)|={
v(t)if1≤t≤2 and 3≤t≤ 4
−v(t)if2<t < 3