More Applications of Definite Integrals 321Step 2. y(t)=y 0 ekty(t)= 60 e⎡
⎢⎣−ln2
5750⎤
⎥⎦y(t)= 60 e⎡
⎢⎣−ln2
5750⎤
⎥⎦(3000)y(3000)≈ 41. 7919
Thus, there will be approximately 41.792 grams of carbon-14 after 3000 years.Separable Differential Equations
General ProcedureSTRATEGY 1. Separate the variables:g(y)dy=f(x)dx.
- Integrate both sides:
∫
g(y)dy=∫
f(x)dx.- Solve foryto get a general solution.
- Substitute given conditions to get a particular solution.
- Verify your result by differentiating.
Example 1Given
dy
dx
= 4 x^3 y^2 andy(1)=−1
2
, solve the differential equation.Step 1. Separate the variables:1
y^2
dy= 4 x^3 dx.Step 2. Integrate both sides:∫
1
y^2
dy=∫
4 x^3 dx;−1
y
=x^4 +C.Step 3. General solution:y=− 1
x^4 +C.
Step 4. Particular solution:−1
2
=
− 1
1 +C
⇒c=1;y=− 1
x^4 + 1.
Step 5. Verify the result by differentiating.y=− 1
x^4 + 1
=(−1) (x^4 +1)−^1dy
dx
=(−1) (−1) (x^4 +1)−^2 (4x^3 )=
4 x^3
(x^4 +1)^2.
Note:y=− 1
x^4 + 1
impliesy^2 =1
(x^4 +1)^2.
Thus,
dy
dx=
4 x^3
(x^4 +1)^2
= 4 x^3 y^2.