Take a Diagnostic Exam 31- v(t)=
t^3
3− 2 t^2 + 5a(t)=v′(t)=t^2 − 4 t
See Figure DS-9.
The graph indicates that for 0≤t≤6, the
maximum acceleration occurs at the endpoint
t=6.a(t)=t^2 − 4 tanda(6)= 62 −4(6)= 12.Figure DS-9- y=x
(^3) ,x≥0;dy
dx
= 3 x^2
f′(x)= 12 ⇒
dy
dx
= 3 x^2 = 12
⇒x^2 = 4 ⇒x= 2
Slope of normal=negative reciprocal of slope
of tangent=−
1
12
.
Atx=2,y=x^3 = 23 =8; (2, 8)
y− 8 =−1
12
(x−2).Equation of normal line:⇒y=−1
12
(x−2)+ 8ory=−1
12
x+49
6
.
- f(x)=
lnx
x
; f′x=
(1/x)(x)−(1)lnx
x^2=1
x^2−
lnx
x^2y=−x^2 ;
dy
dx
=− 2 x
Perpendicular tangents⇒(f′(x))(
dy
dx)
=− 1⇒
((
1
x^2)
−
lnx
x^2)
(− 2 x)=− 1.Using the [Solve] function on your calculator,
you obtainx≈ 1. 37015 ≈ 1 .370.- f
(
π
2)
= 3 ⇒(
π
2,3
)
is on the graph.f′(
π
2)
=− 1 ⇒slope of the tangent atx=
π
2
is− 1.
Equation of tangent line:y− 3 =− 1(
x−
π
2)
ory=−x+
π
2+ 3.
Thus, f(
π
2+
π
180)
≈−(
π
2+
π
180)+
π
2+ 3
≈ 3 −
π
180≈ 2. 98255
≈ 2. 983.
- Position is given byx= 4 t^2 andy=
√
t,
so velocity is
dx
dt
= 8 tand
dy
dt=
1
2
√
t. The
acceleration will be
d^2 x
dt^2=8,
d^2 y
dt^2=−
1
4
t−^3 /^2.Evaluate−1
4
t−^3 /^2]t= 4=−
1
4
(
1
8)
=−1
32
to getthe acceleration vector〈
8,−1
32
〉
.- The slope of the tangent line is
dy
dx
∣∣
∣∣
t= 1anddx
dt=2,
dy
dt
= 2 t+2, so
dy
dx∣∣
∣∣
t= 1=
2 t+ 2
2∣
∣∣
∣t= 1 =t+^1∣∣
t= 1 =2. Att=1,x=5,y=3,⇒(5, 3),
So, the equation of the tangent line is
y− 3 =2(x−5)⇒y=2(x−5)+ 3 ⇒y= 2 x−7.