32 STEP 2. Determine Your Test ReadinessChapter 10
28.∫
1 −x^2
x^2
dx=∫ (
1
x^2−
x^2
x^2)
dx=
∫ (
1
x^2− 1
)
dx=
∫
(x−^2 −1)dx=
x−^1
− 1
−x+C=−
1
x
−x+CKEY IDEAYou can check the answer by
differentiating your result.- Letu=ex+1;du=exdx.
f(x)=∫
ex
ex+ 1
dx=∫
1
u
du=ln|u|+C=ln|ex+ 1 |+C
f(0)=ln|e^0 + 1 |+C=ln (2)+C
Sincef(0)=ln 2⇒ln (2)+C
=ln 2⇒C= 0.
Thus, f(x)=ln (ex+1) andf(ln 2)
=ln (eln 2+1)=ln (2+1)
=ln 3.- See Figure DS-10.
To find the points of intersection, set
sin 2x=1
2
⇒ 2 x=sin−^1(
1
2)⇒ 2 x=
π
6
or 2x=
5 π
6
⇒x=
π
12
orx=
5 π
12.
Volume of solid=π∫ 5 π/ 12π/ 12[
(sin 2x)^2 −(
1
2) 2 ]
dx.Using your calculator, you obtain:
Volume of solid≈(0.478306)π
≈ 1. 50264 ≈ 1. 503.Figure DS-1031.
∫ 521
x^2 + 2 x− 3
dx=∫ 521
(x+3)(x−1)
dxUse a partial fraction decomposition with
A
(x+3)+
B
(x−1)=
1
(x+3)(x−1)
, whichgivesA=− 1
4
andB=1
4
. Then the integral
becomes
=∫ 52− 1 / 4
(x+3)dx+∫ 521 / 4
(x−1)dx=
− 1
4
∫ 521
(x+3)
dx+1
4
∫ 521
(x−1)
dx=
− 1
4
ln∣∣
x+ 3∣∣
+1
4
ln∣∣
x− 1∣∣]^5
2=1
4
(
ln∣∣
∣∣x−^1
x+ 3∣∣
∣∣)] 52=1
4
[(
ln∣∣
∣∣^4
8∣∣
∣∣)
−(
ln∣∣
∣∣^1
5∣∣
∣∣)]=
1
4
ln(
5
2)- Integrate
∫
x^2 cosxdxby parts withu=x^2 ,
du= 2 xdx,dv=cosxdx, andv=sinx.
The integral becomes
=x^2 sinx−∫
sinx(2x)dx
=x^2 sinx− 2∫
xsinxdx.
Use parts again for the remaining integral,
lettingu=x,du=dx,dv=sinxdx, and
v=−cosx. The integral
=x^2 sinx− 2[
−xcosx−∫
(−cosx)dx]