34 STEP 2. Determine Your Test Readiness40.
∫∞0e−xdx=klim→∞∫k0e−xdx=klim→∞[−e−x]k 0=klim→∞[
−e−k+e^0]
=klim→∞[
−e−k+ 1]
= 1Chapter 12
- Total distance=
∫ 40v(t)dt+∣∣
∣
∣∫ 64v(t)dt∣∣
∣
∣=
1
2
(4)(20)+
∣∣
∣∣^1
2(2)(−10)
∣∣
∣∣= 40 + 10 =50 feet42.
∫ 5− 1f(x)dx=∫ 1− 1f(x)dx+∫ 51f(x)dx=−
1
2
(2)(1)+
1
2
(2+4)(1)
=− 1 + 3 = 2
- To find points of intersection, set
y=x^2 −x= 0
⇒x(x−1)= 0 ⇒x=0orx=1.
See Figure DS-12.
01yxy=x^2 – xFigure DS-12Area=∣
∣∣
∣∫ 10(
x^2 −x)
dx∣
∣∣
∣=∣∣
∣∣
∣x^3
3−
x^2
2] 10∣∣
∣∣
∣=
∣∣
∣∣(
1
3−
1
2
)
− 0∣∣
∣∣=∣∣
∣∣−^1
6∣∣
∣∣=
1
6
44.
∫k−kf(x)dx= 0 ⇒ f(x) is an odd function,
i.e., f(x)=−f(−x). Thus the graph in choice
(D) is the only odd function.- Area=
∫k1√
xdx=∫k1x^1 /^2 dx=
[
x^3 /^2
3 / 2]k1=[
2
3
x^3 /^2]k1=
2
3
k^3 /^2 −2
3
(1)^3 /^2
=
2
3
k^3 /^2 −2
3
=
2
3
(
k^3 /^2 − 1)
.Since A=8, set2
3
(
k^3 /^2 − 1)
= 8 ⇒k^3 /^2 − 1
= 12 ⇒k^3 /^2 =13 ork= 132 /^3.- See Figure DS-13.
Figure DS-13Using the [Intersection] function of the
calculator, you obtain the intersection
points atx= 0 .785398, 3.92699, and
7.06858.Area=∫ 3. 926990. 785398(sinx−cosx)dx+
∫ 7. 068583. 92699(cosx−sinx)dx= 2. 82843 + 2. 82843 ≈ 5. 65685 ≈ 5. 657
You can also find the area by:Area=∫ 7. 06858. 785398
∣∣
sinx−cosx∣∣
dx≈ 5. 65685 ≈ 5. 657.