Take a Diagnostic Exam 33simplifies to
=x^2 sinx+ 2 xcosx− 2∫
cosxdx,
and the final integration gives you
=x^2 sinx+ 2 xcosx−2 sinx+C.Chapter 11
33.∫ 411
√
x
dx=∫ 41x−^1 /^2 dx=
x^1 /^2
1 / 2] 41
= 2 x^1 /^2] 4
1
=2(4)^1 /^2 −2(1)^1 /^2 = 4 − 2 = 234.
∫k− 1(2x−3)dx=x^2 − 3 x]k
− 1=k^2 − 3 k−(1+3)
=k^2 − 3 k− 4
Setk^2 − 3 k− 4 = 6 ⇒k^2 − 3 k− 10 = 0
⇒(k−5)(k+2)= 0 ⇒k=5ork=− 2.KEY IDEAYou can check your answer by
evaluating∫− 2− 1(2x−3)dxand
∫ 5− 1(2x−3)dx.- h(x)=
∫ππ/ 2√
sintdt⇒h′(x)=√
sinxh′(π)=√
sinπ=√
0 = 0- Letu= 3 x;du= 3 dxor
du
3
=dx.
∫
g(3x)dx=
∫
g(u)
du
3=
1
3
∫
g(u)du=
1
3
f(u)+c=1
3
f(3x)+c
∫ 20g(3x)dx=1
3
[f(3x)]^20=
1
3
f(6)−1
3
f(0)Thus, the correct choice is (A).37.
∫xπsin(2t)dt=[
−cos(2t)
2]xπ
=
−cos(2x)
2−
(
−
cos(2π)
2)=−
1
2
cos(2x)+1
2
38. I.
∫caf(x)dx=∫baf(x)dx+∫cbf(x)dxThe statement is true, since the upper and
lower limits of the integrals are in sequence,
i.e.a→c=a→b→c.II.∫baf(x)dx=∫caf(x)dx−∫bcf(x)dx=
∫caf(x)dx+∫cbf(x)dxThe statement is not always true.III.∫cbf(x)dx=∫abf(x)dx−∫acf(x)dx=
∫abf(x)dx+∫caf(x)dxThe statement is true.
Thus, only statements I and III are true.- Sinceg(x)=
∫ xπ/ 22 sintdt, then
g′(x)=2 sinx.
Setg′(x)= 0 ⇒2 sinx= 0 ⇒x=πor 2π
g′′(x)=2 cosxandg′′(π)=2 cosπ=
−2 andg′′(2π)= 1.
Thusg has a local minimum atx= 2 π. You
can also approach the problem geometrically
by looking at the area under the curve. See
Figure DS-11.++y= 2 sint2 π
2
5 π
2 2
0 ππ^3 π–22ytFigure DS-11