and ∫cos x dx = sin x + C.
First, we need to rewrite the integrand, using trig identities: dx =
dx = ∫(cos x + 4 sec^2 x) dx. Now, we can evaluate the integral: ∫(cos x +
4 sec^2 x) dx = sin x + 4 tan x + C.
- −2 cos x + C
Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sin x dx = − cos x + C.
First, we need to rewrite the integrand, using trig identities: = =
. Now, we can evaluate the integral: ∫2 sin x dx = −2 cos x + C.
- x + sin x + C
Here we will use the Rules for the Integrals of Trig Functions, namely: ∫cos x dx = sin x + C.
First, we need to rewrite the integrand, using trig identities: ∫(1 + cos^2 x sec x) dx =
dx = ∫(1 + cos x) dx. Now, we can evaluate the integral: ∫(1 + cos x) dx = x +
sin x + C.
- − cos x + C
Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sin x dx = − cos x + C.
First, we need to rewrite the integrand, using trig identities: dx = ∫ sin x dx. Now we
can evaluate the integral: ∫sin x dx = − cos x + C.
−2 tan x + C
Here we will use the Rules for the Integrals of Trig Functions, namely: ∫sec^2 x dx = tan x + C.
First, we need to rewrite the integrand, using trig identities: ∫ dx = ∫(x − 2 sec^2