We can use this resultto determinethe measureof the anglesof a triangle.In particular, if we knowthe
measuresof two angles,we can alwaysfind the third.
Example3:Find the measuresof the missingangles.
a. A trianglehas two anglesthat measures 30
o
and 50
o
.
b. A right trianglehas an anglethat measures 30 o.
c. An isoscelestrianglehas an anglethat measures 50 o.
Solution:
a. 100o
180 - 30 - 50 = 100.
b. 60o
The triangleis a right triangle,whichmeansthat one anglemeasures 90 o.
So we have:180 - 90 - 30 = 60.
c. 50oand 80o, or 65oand 65o
Thereare two possibilities.First,if a secondanglemeasures 50
o
, then the third anglemeasures 80
o
as 180
- 50 - 50 = 80.
In the secondcase,the 50oangleisnotone of the congruentangles.In this case,the sum of the othertwo
anglesis 180 - 50 = 130. Thereforethe two angleseachmeasure 65 o.
Noticethat informationaboutthe anglesof a triangledoesnot tell us the lengthsof the sides.For example,
two trianglescouldhavethe samethreeangles,but the trianglesare notcongruent.That is, the correspond-
ing sidesand the correspondinganglesdo not havethe samemeasures.However, thesetwo triangleswill
besimilar.Next we definesimilarityand discussthe criteriafor trianglesto be similar.
Similartriangles
Considerthe situationin whichtwo triangleshavethreepair of congruentangles.