Notice the pattern of the terms in the factored form of
- (a binomial factor)(a trinomial factor)
- The binomial factor has the difference of the cube roots of the given terms.
- The terms in the trinomial factor are all positive.
- The terms in the binomial factor help to determine the trinomial factor.
x^3 - y^3 =
x^3 - y^3.
SECTION 6.4 Special Factoring Techniques 385
NOW TRY
EXERCISE 6
Factor each polynomial.
(a)
(b)
(c)
(d) 125 x^3 - 343 y^6
3 k^3 - 192
8 t^3 - 125
a^3 - 27
positive
First term product of second term
squared the terms squared
x^3 - y^3 = 1 x- y 21 x^2 + xy + y^22
+ +
CAUTION The polynomial is not equivalent to.
= 1 x- y 21 x^2 - 2 xy+y^22
= 1 x-y 21 x^2 + xy+ y^22 = 1 x- y 21 x- y 21 x-y 2
x^3 - y^31 x- y 23
x^3 - y^31 x- y 23
Factoring Differences of Cubes
Factor each polynomial.
(a)
Let and in the pattern for the difference of cubes.
Let
(b)
and
Let
= 12 p- 3214 p^2 + 6 p+ 92 Apply the exponents. Multiply.
= 12 p- 32312 p 22 + 12 p 23 + 324 x= 2 p, y=3.
= 12 p 23 - 33 8 p^3 = 12 p 23 27 = 33.
8 p^3 - 27
= 1 m- 521 m^2 + 5 m+ 252 52 = 25
m^3 - 125 =m^3 - 53 = 1 m- 521 m^2 + 5 m+ 522 x=m, y=5.
x^3 - y^3 = 1 x - y 21 x^2 + xy +y^22
x=m y= 5
m^3 - 125
EXAMPLE 6
(c)
Factor out the common factor, 4.
Factor the difference of cubes.
(d)
Write each term as a cube.
Factor the difference of cubes.
Apply the exponents. Multiply.
NOW TRY
= 15 t- 6 s^22125 t^2 + 30 ts^2 + 36 s^42
= 15 t- 6 s^22315 t 22 + 5 t 16 s^22 + 16 s^2224
= 15 t 23 - 16 s^223
125 t^3 - 216 s^6
= 41 m- 221 m^2 + 2 m+ 42
= 41 m^3 - 232 8 = 23
= 41 m^3 - 82
4 m^3 - 32
NOT 2p^2.
12 p 22 = 22 p^2 = 4 p^2 ,
NOW TRY ANSWERS
- (a)
(b)
(c)
(d)
125 x^2 + 35 xy^2 + 49 y^42
15 x- 7 y^22 #
31 k- 421 k^2 + 4 k+ 162
12 t- 5214 t^2 + 10 t+ 252
1 a- 321 a^2 + 3 a+ 92