Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1

298 CHAPTER 5 Exponents, Polynomials, and Polynomial Functions


(d)


Square twice.

Distributive property

Distributive property
again

Combine like terms.
NOW TRY

OBJECTIVE 6 Multiply polynomial functions. In Section 5.3,we added and


subtracted functions. Functions can also be multiplied.


= 16 a^4 + 32 a^3 b+ 24 a^2 b^2 + 8 ab^3 +b^4


+ 4 a^2 b^2 + 4 ab^3 + b^4


= 16 a^4 + 16 a^3 b+ 4 a^2 b^2 + 16 a^3 b+ 16 a^2 b^2 + 4 ab^3


+b^214 a^2 + 4 ab+b^22


= 4 a^214 a^2 + 4 ab+ b^22 + 4 ab 14 a^2 + 4 ab+b^22


= 14 a^2 + 4 ab+ b^2214 a^2 + 4 ab+ b^222 a+b


= 12 a+b 22 12 a+b 22


12 a+b 24


CAUTION Write the product as not which indi-


cates the composition of functions ƒ and g. (See Section 5.3.)


ƒ 1 x 2 #g 1 x 2 1 ƒg 21 x 2 , ƒ 1 g 1 x 22 ,


Multiplying Functions

If and define functions, then


Product function

The domain of the product function is the intersection of the domains of


and g 1 x 2.


ƒ 1 x 2


1 ƒg 21 x 2 ƒ 1 x 2 #g 1 x 2.


ƒ 1 x 2 g 1 x 2


Multiplying Polynomial Functions

For and find and


Use the definition.
Substitute.
FOIL
Combine like terms.

Let in

Add and subtract.
Confirm that ƒ 1 - 12 #g 1 - 12 is equal to 1 ƒg 21 - 12. NOW TRY

= 1


=- 6 + 11 - 4


= 61 - 123 + 111 - 122 + 41 - 12 x=- 1 1 ƒg 21 x 2.


1 ƒg 21 - 12


= 6 x^3 + 11 x^2 + 4 x


= 6 x^3 + 3 x^2 + 8 x^2 + 4 x


= 13 x+ 4212 x^2 +x 2


=ƒ 1 x 2 #g 1 x 2


1 ƒg 21 x 2


ƒ 1 x 2 = 3 x+ 4 g 1 x 2 = 2 x^2 +x, 1 ƒg 21 x 2 1 ƒg 21 - 12.


EXAMPLE 8


Be careful
with signs.

NOW TRY
EXERCISE 7
Find each product.


(a)


(b) 1 y- 324


314 x-y 2 + 24314 x-y 2 - 24

NOW TRY
EXERCISE 8
For
and
find and. 1 ƒg 21 x 2 1 ƒg 21 - 22


g 1 x 2 = 8 x+7,

ƒ 1 x 2 = 3 x^2 - 1

NOW TRY ANSWERS



  1. (a)
    (b)

  2. 24 x^3 + 21 x^2 - 8 x-7; - 99


108 y+ 81

y^4 - 12 y^3 + 54 y^2 -

16 x^2 - 8 xy+y^2 - 4
Free download pdf