Introduction to trigonometry 185
BA0 2 4
(a) (b)688f(x)7
64
3
2BA C0 2 4688f(x)7
64
3
2Figure 21.13
(a) PointsAandBare shown in Figure 21.13(a).In Figure 21.13(b), the horizontal and vertical
linesAC andBCare constructed. SinceABC is
a right-angled triangle, andAC=( 8 − 2 )=6and
BC=( 7 − 3 )=4, by Pythagoras’ theorem,AB^2 =AC^2 +BC^2 = 62 + 42and AB=√
62 + 42 =√
52
=7.211correct to 3
decimal places.(b) The gradient of AB is given by tanθ,i.e.
gradient=tanθ=
BC
AC=
4
6=
2
3Now try the following Practice Exercise
PracticeExercise 83 Trigonometric ratios
(answers on page 349)- Sketch a triangleXY Zsuch that
∠Y= 90 ◦, XY=9cm and YZ=40cm.
Determine sinZ,cosZ,tanXand cosX. - In triangleABCshown in Figure 21.14, find
sinA,cosA,tanA,sinB,cosBand tanB.
BC(^53)
A
Figure 21.14
- If cosA=
15
17
,findsinAand tanA, in fraction
form.- If tanX=
15
112,findsinXand cosX, in frac-
tion form.- For the right-angled triangle shown in
Figure 21.15, find (a) sinα(b) cosθ(c) tanθ.
17
815
Figure 21.15- If tanθ=
7
24,findsinθand cosθin fraction
form.- PointPlies at co-ordinate(− 3 , 1 )and point
Qat( 5 ,− 4 ). Determine
(a) the distancePQ.
(b) the gradient of the straight linePQ.
21.4 Evaluating trigonometric ratios
of acute angles
The easiest way to evaluate trigonometric ratios of any
angle is to use a calculator. Use a calculator to check the
following (each correct to 4 decimal places).
sin29◦=0.4848 sin53. 62 ◦=0.8051
cos67◦=0.3907 cos83. 57 ◦=0.1120
tan34◦=0.6745 tan67. 83 ◦=2.4541sin67◦ 43 ′=sin6743
60◦
=sin67. 7166666 ...◦=0.9253cos13◦ 28 ′=cos1328
60◦
=cos13. 466666 ...◦=0.9725tan56◦ 54 ′=tan5654
60◦
=tan56. 90 ◦=1.5340If we know the value ofa trigonometricratio and need to
find the angle we use theinverse functionon our calcu-
lators. For example, using shift and sin on our calculator
gives sin−^1 (
If, for example, we know the sine of an angle is 0.5 then
the value of the angle is given bysin−^10. 5 = 30 ◦(Check that sin30◦= 0. 5 )Similarly, ifcosθ= 0 .4371 thenθ=cos−^10. 4371 =64.08◦