Advanced book on Mathematics Olympiad

(ff) #1

152 3 Real Analysis


Proof.To prove the formula we start by computing recursively the integral


In=

∫ π 4

0

tan^2 nxdx, n≥ 1.

We have


In=

∫ π 4

0

tan^2 nxdx=

∫ π 4

0

tan^2 n−^2 xtan^2 xdx

=

∫ π 4

0

tan^2 n−^2 x( 1 +tan^2 x)dx−

∫ π 4

0

tan^2 n−^2 xdx

=

∫ π 4

0

tan^2 n−^2 xsec^2 xdx+In− 1.

The remaining integral can be computed using the substitution tanx=t. In the end, we
obtain the recurrence


In=

1

2 n− 1

−In− 1 ,n≥ 1.

So forn≥1,


In=

1

2 n− 1


1

2 n− 3

+···+

(− 1 )n−^2
3
+(− 1 )n−^1 I 1 ,

with


I 1 =

∫ π 4

0

tan^2 xdx=

∫ π 4

0

sec^2 xdx−

∫ π 4

0

1 dx=tanx


∣∣π 4
0 −

π
4

= 1 −

π
4

.

We find that


In=

1

2 n− 1


1

2 n− 3

+···+

(− 1 )n−^2
3

+(− 1 )n−^1 +(− 1 )n
π
4

.

Because tan^2 nx→0asn→∞uniformly on any interval of the form[ 0 ,a),a<π 4 ,it
follows that limn→∞In=0. The Leibniz formula follows. 


Below are more examples of this kind.

464.LetP(x)be a polynomial with real coefficients. Prove that
∫∞


0

e−xP(x)dx=P( 0 )+P′( 0 )+P′′( 0 )+···.
Free download pdf