Advanced book on Mathematics Olympiad

(ff) #1
3.2 Continuity, Derivatives, and Integrals 155

This is just a Riemann sum of the function( 1 − 2 x)ln( 1 −x)over the interval[ 0 , 1 ].
Passing to the limit, we obtain


nlim→∞

1

n

lnGn=

∫ 1

0

( 1 − 2 x)ln( 1 −x)dx.

The integral is computed by parts as follows:
∫ 1


0

( 1 − 2 x)ln( 1 −x)dx

= 2

∫ 1

0

( 1 −x)ln( 1 −x)dx−

∫ 1

0

ln( 1 −x)dx

=−( 1 −x)^2 ln( 1 −x)


∣^1

0 −^2

∫ 1

0

( 1 −x)^2
2

·

1

1 −x

dx+( 1 −x)ln( 1 −x)

∣∣

∣∣

1

0

+x


∣∣



1

0
=−

∫ 1

0

( 1 −x)dx+ 1 =

1

2

.

Exponentiating back, we obtain limn→∞n



Gn=


e. 

468.Compute


lim
n→∞

[

1


4 n^2 − 12

+

1


4 n^2 − 22

+···+

1


4 n^2 −n^2

]

.

469.Prove that forn≥1,


1

2 + 5 n

+

1


4 + 5 n

+

1


6 + 5 n

+···+

1


2 n+ 5 n

<


7 n−


5 n.

470.Compute


nlim→∞

(

21 /n
n+ 1

+

22 /n
n+^12

+···+

2 n/n
n+^1 n

)

.

471.Compute the integral
∫π


0

ln( 1 − 2 acosx+a^2 )dx.

472.Find all continuous functionsf:R→[ 1 ,∞)for which there exista∈Randka
positive integer such that


f(x)f( 2 x)···f (nx)≤ank,

for every real numberxand positive integern.
Free download pdf