470 Real Analysis
318.It is known that
lim
x→ 0 +
xx= 1.
Here is a short proof using L’Hôpital’s theorem:
lim
x→ 0 +
xx=lim
x→ 0 +
exlnx=elimx→^0 +xlnx=e
limx→ 0 +ln 1 x
x =elimx→ 0 +(−x)= 1.
Returning to the problem, fix>0, and chooseδ>0 such that for 0<x<δ,
∣∣
xx− 1
∣∣
<.
Then forn≥^1 δwe have
∣∣
∣∣
∣
n^2
∫ (^1) n
0
(xx+^1 −x)dx
∣∣
∣∣
∣
≤n^2
∫ (^1) n
0
|xx+^1 −x|dx,
=n^2
∫ (^1) n
0
x|xx− 1 |dx < n^2
∫ (^1) n
0
xdx=
2
.
It follows that
lim
n→∞
∫ (^1) n
0
(xx+^1 −x)dx= 0 ,
and so
nlim→∞n^2
∫ (^1) n
0
xx+^1 dx=nlim→∞n^2
∫ (^1) n
0
xdx=
1
2
.
(Revista Matematica din Timi ̧soara ̆ (Timi ̧soara Mathematics Gazette), proposed by
D. Andrica)
319.We will prove by induction onn≥1 that
xn+ 1 >
∑n
k= 1
kxk>a·n!,
from which it will follow that the limit is∞.
Forn=1, we havex 2 ≥ 3 x 1 >x 1 =a. Now suppose that the claim holds for all
values up throughn. Then
xn+ 2 ≥(n+ 3 )xn+ 1 −
∑n
k= 1
kxk=(n+ 1 )xn+ 1 + 2 xn+ 1 −
∑n
k= 1
kxk