Advanced book on Mathematics Olympiad

(ff) #1

472 Real Analysis


For our problem, let>0 be a fixed small positive number. There existsn()such
that for any integern≥n(),


1 −<

(k
n^2

)k
n^2 +^1
k
n^2

< 1 +, k= 1 , 2 ,...,n.

From this, using properties of ratios, we obtain


1 −<

∑n
k= 1

(k
n^2

)k
n^2 +^1
∑n
k= 1

k
n^2

< 1 +, forn≥n().

Knowing that


∑n
k= 1 k=

n(n+ 1 )
2 , this implies

( 1 −)

n+ 1
2 n

<

∑n

k= 1

(

k
n^2

)nk 2 + 1
<( 1 +)

n+ 1
2 n

, forn≥n().

It follows that


nlim→∞

∑n

k− 1

(

k
n^2

)nk 2 + 1
=

1

2

.

(D. Andrica)

322.Assume thatxnis a square for alln>M. Consider the integersyn=



xn, for
n≥M. Because in baseb,


b^2 n
b− 1

= (^11) ︸ ︷︷... (^1) ︸
2 n


. 111 ...,

it follows that


nlim→∞

b^2 n
b− 1
xn

= 1.

Therefore,


nlim→∞

bn
yn

=


b− 1.

On the other hand,


(byn+yn+ 1 )(byn−yn+ 1 )=b^2 xn−xn+ 1 =bn+^2 + 3 b^2 − 2 b− 5.
Free download pdf