472 Real Analysis
For our problem, let>0 be a fixed small positive number. There existsn()such
that for any integern≥n(),
1 −<
(k
n^2
)k
n^2 +^1
k
n^2
< 1 +, k= 1 , 2 ,...,n.
From this, using properties of ratios, we obtain
1 −<
∑n
k= 1
(k
n^2
)k
n^2 +^1
∑n
k= 1
k
n^2
< 1 +, forn≥n().
Knowing that
∑n
k= 1 k=
n(n+ 1 )
2 , this implies
( 1 −)
n+ 1
2 n
<
∑n
k= 1
(
k
n^2
)nk 2 + 1
<( 1 +)
n+ 1
2 n
, forn≥n().
It follows that
nlim→∞
∑n
k− 1
(
k
n^2
)nk 2 + 1
=
1
2
.
(D. Andrica)
322.Assume thatxnis a square for alln>M. Consider the integersyn=
√
xn, for
n≥M. Because in baseb,
b^2 n
b− 1
= (^11) ︸ ︷︷... (^1) ︸
2 n
. 111 ...,
it follows that
nlim→∞
b^2 n
b− 1
xn
= 1.
Therefore,
nlim→∞
bn
yn
=
√
b− 1.
On the other hand,
(byn+yn+ 1 )(byn−yn+ 1 )=b^2 xn−xn+ 1 =bn+^2 + 3 b^2 − 2 b− 5.