472 Real Analysis
For our problem, let>0 be a fixed small positive number. There existsn()such
that for any integern≥n(),
1 −<
(k
n^2)k
n^2 +^1
k
n^2< 1 +, k= 1 , 2 ,...,n.From this, using properties of ratios, we obtain
1 −<
∑n
k= 1(k
n^2)k
n^2 +^1
∑n
k= 1k
n^2< 1 +, forn≥n().Knowing that
∑n
k= 1 k=n(n+ 1 )
2 , this implies( 1 −)
n+ 1
2 n<
∑nk= 1(
k
n^2)nk 2 + 1
<( 1 +)n+ 1
2 n, forn≥n().It follows that
nlim→∞∑nk− 1(
k
n^2)nk 2 + 1
=1
2
.
(D. Andrica)322.Assume thatxnis a square for alln>M. Consider the integersyn=
√
xn, for
n≥M. Because in baseb,
b^2 n
b− 1= (^11) ︸ ︷︷... (^1) ︸
2 n
. 111 ...,
it follows that
nlim→∞b^2 n
b− 1
xn= 1.
Therefore,
nlim→∞bn
yn=
√
b− 1.On the other hand,
(byn+yn+ 1 )(byn−yn+ 1 )=b^2 xn−xn+ 1 =bn+^2 + 3 b^2 − 2 b− 5.