554 Real Analysis
1
T
∫T
0
|f(x)|^2 dx=a 02 + 2
∑∞
n= 1
(an^2 +b^2 n).
Our particular function has the Fourier series expansion
f(x)=
1
2 π
∑∞
n=−∞
1
n
cos 2πnx,
and in this case Parseval’s identity reads
∫ 1
0
|f(x)|^2 dx=
1
2 π^2
∑∞
n= 1
1
n^2
.
The left-hand side is
∫ 1
0 |f(x)|
(^2) dx=^1
12 , and the formula follows.
495.This problem uses the Fourier series expansion off(x)=|x|,x ∈[−π, π].A
routine computation yields
|x|=
π
2
−
4
π
∑∞
k= 0
cos( 2 k+ 1 )x
( 2 k+ 1 )^2
, forx∈[−π, π].
Settingx=0, we obtain the identity from the statement.
496.We will use only trigonometric considerations, and compute no integrals. A first
remark is that the function is even, so only terms involving cosines will appear. Using
Euler’s formula
eiα=cosα+isinα
we can transform the identity
∑n
k= 1
e^2 ikx=
e^2 i(n+^1 )x− 1
e^2 ix− 1
into the corresponding identities for the real and imaginary parts:
cos 2x+cos 4x+···+cos 2nx=
sinnxcos(n+ 1 )x
sinx
,
sin 2x+sin 4x+···+sin 2nx=
sinnxsin(n+ 1 )x
sinx
.
These two relate to our function as
sin^2 nx
sin^2 x
=
(
sinnxcos(n+ 1 )x
sinx
) 2
+
(
sinnxsin(n+ 1 )x
sinx