Real Analysis 569513.Fixα, β, γand consider the function
f (x, y, z)=cosx
sinα+
cosy
sinβ+
cosz
sinγwith the constraintsx+y+z=π,x, y, z≥0. We want to determine the maximum of
f (x, y, z). In the interior of the triangle described by the constraints a maximum satisfies
sinx
sinα=−λ,
siny
sinβ=−λ,sinz
sinβ=−λ,x+y+z=π.By the law of sines, the triangle with anglesx, y, zis similar to that with anglesα, β, γ,
hencex=α,y=β, andz=γ.
Let us now examine the boundary. Ifx=0, then cosz=−cosy. We prove that
1
sinα
+cosy(
1
sinβ−
1
sinγ)
<cotα+cotβ+cotγ.This is a linear function in cosy, so the inequality will follow from the corresponding
inequalities at the two endpoints of the interval, namely from
1
sinα+
1
sinβ−
1
sinγ
<cotα+cotβ+cotγand
1
sinα+
1
sinβ−
1
sinγ<cotα+cotβ+cotγ.By symmetry, it suffices to prove just one of these two, the first for example. Eliminating
the denominators, we obtain
sinβsinγ+sinαsinγ−sinαsinβ<sinβsinγcosα+sinαsinγcosβ
+sinαsinβcosγ.The laws of sine and cosine allow us to transform this into the equivalent
bc+ac−ab <
b^2 +c^2 −a^2
2+
a^2 +c^2 −b^2
2+
a^2 +b^2 −c^2
2