Advanced book on Mathematics Olympiad

(ff) #1

570 Real Analysis


and this is equivalent to(a+b−c)^2 >0. Hence the conclusion.
(Kvant(Quantum), proposed by R.P. Ushakov)


514.The domain is bounded by the hyperbolasxy=1,xy=2 and the linesy=xand
y= 2 x. This domain can mapped into a rectangle by the transformation


T: u=xy, v=

y
x

.

Thus it is natural to consider the change of coordinates


T−^1 : x=


u
v

,y=


uv.

The domain becomes the rectangleD∗={(u, v)∈R^2 | 1 ≤u≤ 2 , 1 ≤v≤ 2 }. The
Jacobian ofT−^1 is 21 v =0. The integral becomes


∫ 2

1

∫ 2

1


u
v

1

2 v

dudv=

1

2

∫ 2

1

u^1 /^2 du

∫ 2

1

v−^3 /^2 dv=

1

3

( 5


2 − 6 ).

(Gh. Bucur, E. Câmpu, S. G ̆aina, ̆ Culegere de Probleme de Calcul Diferen ̧tial ̧si
Integral(Collection of Problems in Differential and Integral Calculus), Editura Tehnic ̆a,
Bucharest, 1967)


515.Denote the integral byI. The change of variable(x,y,z)→(z,y,x)transforms
the integral into


∫∫∫

B

z^4 + 2 y^4
x^4 + 4 y^4 +z^4

dxdydz.

Hence


2 I=

∫∫∫

B

x^4 + 2 y^4
x^4 + 4 y^4 +z^4

dxdydz+

∫∫∫

B

2 y^4 +z^4
x^4 + 4 y^4 +z^4

dxdydz

=

∫∫∫

B

x^4 + 4 y^4 +z^4
x^4 + 4 y^4 +z^4

dxdydz=
4 π
3

.

It follows thatI=^23 π.


516.The domainDis depicted in Figure 71. We transform it into the rectangleD 1 =
[^14 ,^12 ]×[^16 ,^12 ]by the change of coordinates


x=

u
u^2 +v^2

,y=

v
u^2 +v^2

.

The Jacobian is

Free download pdf