570 Real Analysis
and this is equivalent to(a+b−c)^2 >0. Hence the conclusion.
(Kvant(Quantum), proposed by R.P. Ushakov)
514.The domain is bounded by the hyperbolasxy=1,xy=2 and the linesy=xand
y= 2 x. This domain can mapped into a rectangle by the transformation
T: u=xy, v=y
x.
Thus it is natural to consider the change of coordinates
T−^1 : x=√
u
v,y=√
uv.The domain becomes the rectangleD∗={(u, v)∈R^2 | 1 ≤u≤ 2 , 1 ≤v≤ 2 }. The
Jacobian ofT−^1 is 21 v =0. The integral becomes
∫ 21∫ 2
1√
u
v1
2 vdudv=1
2
∫ 2
1u^1 /^2 du∫ 2
1v−^3 /^2 dv=1
3
( 5
√
2 − 6 ).
(Gh. Bucur, E. Câmpu, S. G ̆aina, ̆ Culegere de Probleme de Calcul Diferen ̧tial ̧si
Integral(Collection of Problems in Differential and Integral Calculus), Editura Tehnic ̆a,
Bucharest, 1967)
515.Denote the integral byI. The change of variable(x,y,z)→(z,y,x)transforms
the integral into
∫∫∫Bz^4 + 2 y^4
x^4 + 4 y^4 +z^4dxdydz.Hence
2 I=∫∫∫
Bx^4 + 2 y^4
x^4 + 4 y^4 +z^4dxdydz+∫∫∫
B2 y^4 +z^4
x^4 + 4 y^4 +z^4dxdydz=
∫∫∫
Bx^4 + 4 y^4 +z^4
x^4 + 4 y^4 +z^4dxdydz=
4 π
3.
It follows thatI=^23 π.
516.The domainDis depicted in Figure 71. We transform it into the rectangleD 1 =
[^14 ,^12 ]×[^16 ,^12 ]by the change of coordinates
x=u
u^2 +v^2,y=v
u^2 +v^2.
The Jacobian is