Chapter
(^4)
P1^
f: x 1016 x (approx.)
f−^1 : x 10 −^16 x (approx.)
(iv) (a) Function but no inverse
function since fares are
banded.
Activity 4.1 (Page 117)
(i)
f(x) = x^2 ; f−^1 (x) = x
(ii)
f(x) = 2 x; f−^1 (x) = 12 x
(iii)
f(x) = x + 2; f−^1 (x) = x − 2
(iv)
f(x) = x^3 + 2; f−^1 (x) = 3 x– 2
y = f(x) and y = f−^1 (x) appear to
be reflections of each other in
y = x.
Exercise 4B (Page 120)
1 (i) 8 x^3
(ii) 2 x^3
(iii) (x + 2)^3
(iv) x^3 + 2
(v) 8(x + 2)^3
(vi) 2(x^3 + 2)
(vii) 4 x
(viii) [(x + 2)^3 + 2]^3
(ix) x + 4
2 (i) f−^1 (x) = x–7 2
(ii) f−^1 (x) = 4 − x
(iii) f−^1 (x) = 24 xx–
(iv) f−^1 (x) = x+3, x − 3
3 (i), (ii)
4 (i) fg
(ii) g^2
(iii) fg^2
(iv) gf
5 (i) x
(ii) (^1) x
(iii) (^1) x
(iv) (^1) x
6 (i) a = 3
(ii)
(iii) f(x) 3
(iv) Function f is not one-to-one
when domain is .
Inverse exists for function
with domain x −2.
7 f−^1 : x 3 x– 43 , x ∈ .
The graphs are reflections of
each other in the line y = x.
8 (i) a = 2, b = − 5
(ii) Translation –
2
5
(iii) y − 5
(iv) c = − 2
(v)
x
y y = f(x)
y = f–1(x)
O
x
y
O
y = f(x)
y = f–1(x)
x
y
2
2
y = f(x)
y = f–1(x)
O
x
y
y = f(x)
y = f–1(x)
O
2
2
y
O x
y = f(x)
y = f–1(x)
y = x
(3, 2)
(2, 3)
y
x = –2 O
(–2, 3)
7
x
x
y
(–2, –5)
O
y = g(x)
x
y
O
y = g(x)
y = x
y = g–1(x)
(–2, –5)
(–5, –2)