Answers
292
P1^
9 (i) f(x) 2
(ii) k = 13
10 (i) k = 4 or −8; x = 1 or − 5
(ii) 7
(iii) 92 – xx, x ≠ 0
11 (i) 2(x − 2)^2 + 3
(ii) f(x) 3
(iii) f is not one-to-one
(iv) 2
(v) 2 − x 2 –3, g−^1 (x) 2
12 (i)
(ii) − 9 x^2 + 30 x − 16
(iii) 9 − (x − 3)^2
(iv) 3 + 9–x
Chapter 5
Activity 5.1 (Page 124)
See text that follows.
Activity 5.2 (Page 126)
6.1; 6.01; 6.001
Activity 5.3 (Page 127)
(i) 2
(ii) −4
(iii) 8
Gradient is twice the x co-ordinate.
Exercise 5A (Page 129)
2 4 x^3
(^3)
f(x) f ́(x)
x^22 x
x^33 x^2
x^44 x^3
x^55 x^4
x^66 x^5
xn nxn−^1
●?^ (Page^ 129)
When f(x) = xn, then
f(x + h)
= (x + h)n
= xn + nhxn−^1 + terms of order h^2
and higher powers of h.
The gradient of the chord
= ff()xh+h–(x)
= nxn−^1 + terms of order h and
higher powers of h.
As h tends to zero, the gradient
tends to nxn−^1.
Hence the gradient of the tangent is
nxn−^1.
Activity 5.4 (Page 130)
When x = 0, all gradients = 0
When x = 1, all gradients are equal.
i.e. for any x value they all have the
same gradient.
Activity 5.5 (Page 130)
y = x^3 + c ⇒ ddyx
= 3 x^2 , i.e. gradient
depends only on the x co-ordinate.
Exercise 5B (Page 133)
1 5 x^4
2 8 x
3 6 x^2
4 11 x^10
5 40 x^9
6 15 x^4
7 0
8 7
9 6 x^2 + 15 x^4
10 7 x^6 − 4 x^3
11 2 x
12 3 x^2 + 6 x + 3
13 3 x^2
14 x + 1
15 6 x + 6
16 8 πr
17 4 πr^2
18 12 t
19 2 π
20 3 l^2
(^21 32)
x^12
22 − x^12
23 1
2 x
(^24 12)
(^32)
x
25 −^23
x
26 −^154
x
27 −x−
(^32)
28 2 4 32
x
- x−
(^29 3232)
(^1252)
xx− −
(^30 5323)
(^2353)
xx+ −
x
y
–2 O
–2
y = f(x)
y = x
y = f–1(x)
(^23)
(^23)
y
2 x
y = x^3 + 2
y = x^3 – 1
y = x^3 + 1
y = x^3
1
2
–1