Cambridge International AS and A Level Mathematics Pure Mathematics 1

(Michael S) #1
Chapter

(^5)
293
P1^
31 8 x − 1
32 4 x + 5
33 1
34 16 x^3 − 10 x
(^35 32)
(^12)
x
36 1
x
37 92 x −^1
x
38 34 x^2 −^12 x + 4
39 3
2
x
(^40 5432)
(^322)
xx
x
− −
Exercise 5C (Page 136)
1 (i) (a) − 2 x−^3
(b) − 128
(ii) (a) −x−^2 − 4 x−^5
(b) 3
(iii) (a) − 12 x−^4 − 10 x−^6
(b) − 22
(iv) (a) 12 x^3 + 24 x−^4
(b) 97.5
(v) (a) 1
2 x



  • 3
    (b) (^314)
    (vi) (a) − 2 x−
    (^32)
    (b) − 272
      2 (i)
    (ii) (−2, 0), (2, 0)
    (iii) (^) ddyx = 2 x
    (iv) At (−2, 0), d
    d
    y
    x
    = −4;
    at (2, 0), d
    d
    y
    x
    = 4
      3 (i)
    (ii) (^) ddyx = 2 x − 6
    (iii) At (3, −9), ddyx = 0
    (iv) Tangent is horizontal: curve
    at a minimum.
      4 (i)
    (iii) d
    d
    y
    x
    = − 2 x : at (−1, 3), d
    d
    y
    x
    = 2
    (iv) Yes: the line and the curve
    both pass through (−1, 3)
    and they have the same
    gradient at that point.
    (v) Yes, by symmetry.
      5 (i)
    (ii) (^) ddyx = 3 x^2 − 12 x + 11
    (iii) x = 1: ddyx = 2; x = 2: ddyx = −1;
    x = 3: d
    d
    y
    x
    = 2
    The tangents at (1, 0) and
    (3, 0) are therefore parallel.
      6 (i)
    (ii) (^) ddyx = 2 x + 3
    (iii) (1, 3)
    (iv) No, since the line does not
    go through (1, 3).
      7 (i)
    (ii) (^) ddyx = 2 x
    (iii) At (2, −5), ddyx = 4;
    at (−2, −5), ddyx = − 4
    (iv) At (2, 5), ddyx = −4;
    at (−2, 5), ddyx = 4
    (v) A rhombus
      8 (i)
    (ii) 4
    (iv) y = x^2 + c, c ∈ 
      9 (i) 4 a + b − 5 = 0
    (ii) 12 a + b = 21
    (iii) a = 2 and b = − 3
    y
    –4
    –2 O 2 x
    y
    –
    O   x
    y
    O 2
    5
    x
    4
    –2
    y
    O  x
    –
    2 3
    y
    O
    –1
    x



  • –^32


y

–3 O 3

–9

9

x

y

O
–1

3

x
Free download pdf