1086 26 Equilibrium Statistical Mechanics. II. Statistical Thermodynamics
The Heat Capacity of a Dilute Gas
The heat capacity at constant volume is given by Eq. (2.4-4) for a simple system
CV
(
∂U
∂T
)
N,V
(
∂
∂T
[
NkBT^2
(
∂ln(z)
∂T
)
V
])
N,V
CV 2 NkBT
(
∂ln(z)
∂T
)
V
+NkBT^2
(
∂^2 ln(z)
∂T^2
)
V
(26.1-13)
The heat capacity at constant pressure for our dilute gas can be obtained fromCV. From
Eq. (2.5-9) and Eq. (2.5-1)
CP
(
∂H
∂T
)
P,n
(
∂U
∂T
)
P,n
+P
(
∂V
∂T
)
P,n
(26.1-14)
Equation (B-7) of Appendix B is an example of thevariable-change identity:
(
∂U
∂T
)
P,n
(
∂U
∂T
)
V,n
+
(
∂U
∂V
)
T,n
(
∂V
∂T
)
P,n
(26.1-15)
We substitute this equation into Eq. (26.1-14) and use the fact thatCV(∂U/∂T)V,n
to write
CPCV+
[(
∂U
∂V
)
T,n
+P
](
∂V
∂T
)
P,n
(26.1-16)
From Eq. (26.1-12) a dilute gas obeys the ideal gas equation of state so that
(
∂V
∂T
)
P,n
nR
P
(dilute gas) (26.1-17)
We assume that our dilute gas shares another property of an ideal gas:
(∂U/∂V)T,n0 (ideal gas) (26.1-18)
so that
CPCV+nRCV+NkB (26.1-19)
The Enthalpy of a Dilute Gas
The enthalpy is defined by Eq. (2.5-1):
HU+PV (26.1-20)
Since our dilute gas obeys the ideal gas equation of state,
HU+PVNkBT^2
(
∂ln(z)
∂T
)
V
+NkBT (26.1-21)