Physical Chemistry Third Edition

(C. Jardin) #1

1086 26 Equilibrium Statistical Mechanics. II. Statistical Thermodynamics


The Heat Capacity of a Dilute Gas


The heat capacity at constant volume is given by Eq. (2.4-4) for a simple system

CV

(

∂U

∂T

)

N,V



(


∂T

[

NkBT^2

(

∂ln(z)
∂T

)

V

])

N,V

CV 2 NkBT

(

∂ln(z)
∂T

)

V

+NkBT^2

(

∂^2 ln(z)
∂T^2

)

V

(26.1-13)

The heat capacity at constant pressure for our dilute gas can be obtained fromCV. From
Eq. (2.5-9) and Eq. (2.5-1)

CP

(

∂H

∂T

)

P,n



(

∂U

∂T

)

P,n

+P

(

∂V

∂T

)

P,n

(26.1-14)

Equation (B-7) of Appendix B is an example of thevariable-change identity:
(
∂U
∂T

)

P,n



(

∂U

∂T

)

V,n

+

(

∂U

∂V

)

T,n

(

∂V

∂T

)

P,n

(26.1-15)

We substitute this equation into Eq. (26.1-14) and use the fact thatCV(∂U/∂T)V,n
to write

CPCV+

[(

∂U

∂V

)

T,n

+P

](

∂V

∂T

)

P,n

(26.1-16)

From Eq. (26.1-12) a dilute gas obeys the ideal gas equation of state so that
(
∂V
∂T

)

P,n



nR
P

(dilute gas) (26.1-17)

We assume that our dilute gas shares another property of an ideal gas:

(∂U/∂V)T,n0 (ideal gas) (26.1-18)

so that

CPCV+nRCV+NkB (26.1-19)

The Enthalpy of a Dilute Gas


The enthalpy is defined by Eq. (2.5-1):

HU+PV (26.1-20)

Since our dilute gas obeys the ideal gas equation of state,

HU+PVNkBT^2

(

∂ln(z)
∂T

)

V

+NkBT (26.1-21)
Free download pdf