26.1 The Statistical Thermodynamics of a Dilute Gas 1087
The Helmholtz Energy of a Dilute Gas
Using the formula for the entropy, we can obtain a formula for the Helmholtz energy:AU−TSU−T
[
U
T
+NkB+NkBln(z
N)]
A−NkBTln(z
N)
−NkBT (26.1-22)The Chemical Potential of a Dilute Gas
In statistical mechanics, it is customary to define the chemical potential as a derivative
with respect to the number of molecules, not with respect to the amount in moles:μ(
∂A
∂N
)
T,V(26.1-23)
This chemical potential is equal to the thermodynamic chemical potential divided by
Avogadro’s constant. The number of molecules is an integer, so we use a quotient of
finite differences to approximate the derivative in Eq. (26.1-23):μAN−AN− 1
1
AN−AN− 1 (26.1-24)
where the subscripts indicate the number of molecules in the system.μ−NkBTln(z/N)−NkBT−[
−(N−1)kBTln(
z
N− 1)
−(N−1)kBT]
−NkBTln(z)+NkBTln(N)−NkBT+(N−1)kBTln(z)−(N−1)kBTln(N−1)+NkBT−kBT−kBTln(z)+NkBTln(
N
N− 1
)
+kBTln(N−1)−kBT (26.1-25)SinceNis a large number, the second term of the right-hand side of the final version
of this equation can be approximated:NkBTln(
N
N− 1
)
−NkBTln(
N− 1
N
)
−NkBTln(
1 −
1
N
)
≈−NkBT(
−
1
N
)
kBT (26.1-26)Two terms cancel. SinceNis a large number (near 10^24 in most systems), ln(N−1)
can be replaced by ln(N) without serious error, so thatμ−kBTln(z
N