Physical Chemistry Third Edition

(C. Jardin) #1

26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1093


The Heat Capacity of a Dilute Gas


The heat capacity at constant volume is given by Eq. (26.1-13), but it is easier to
differentiate the formulas for the internal energy.

CV,tr

(

∂Utr
∂T

)

V,N



3

2

NkB

3

2

nR (26.2-10a)

CV,el

(

∂Uel
∂T

)

N

≈0 (most substances) (26.2-10b)

CV,rot

(

∂Urot
∂T

)

N

NkBnR



diatomic or linear
polyatomic
substances


⎠ (26.2-10c)

CV,rot

(

∂Urot
∂T

)

N



3

2

NkB

3

2

nR



nonlinear
polyatomic
substances


⎠ (26.2-10d)

CV,vib

d
dT

(

Nhν
ehν/kBT− 1

)



Nhν
(ehν/kBT−1)^2

ehν/kBT

(


kBT^2

)

NkB

(


kBT

) 2

ehν/kBT
(ehν/kBT−1)^2

NkB

(


kBT

) 2

ehν/kBT
(ehν/kBT−1)^2

CV,vibNkB

(

hcν ̃
kBT

) 2

ehcν/k ̃ BT
(ehc ̃ν/kBT−1)^2

(

diatomic
substances

)

(26.2-10e)

CV,vibNkB

3 n∑−5(6)

i 1

(

hc ̃νi
kBT

) 2

ehcν ̃i/kBT
(ehcν ̃i/kBT−1)^2

(

polyatomic
substances

)

(26.2-10f )

The heat capacity at constant pressure is given by Eq. (26.1-19). We add the termNkB
to the translational contribution. The other contributions toCPare the same as the
contributions toCV.

CP,trCV,tr+NkB

5

2

NkB

5

2

nR (26.2-10g)
Free download pdf