26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1093
The Heat Capacity of a Dilute Gas
The heat capacity at constant volume is given by Eq. (26.1-13), but it is easier to
differentiate the formulas for the internal energy.
CV,tr
(
∂Utr
∂T
)
V,N
3
2
NkB
3
2
nR (26.2-10a)
CV,el
(
∂Uel
∂T
)
N
≈0 (most substances) (26.2-10b)
CV,rot
(
∂Urot
∂T
)
N
NkBnR
⎛
⎝
diatomic or linear
polyatomic
substances
⎞
⎠ (26.2-10c)
CV,rot
(
∂Urot
∂T
)
N
3
2
NkB
3
2
nR
⎛
⎝
nonlinear
polyatomic
substances
⎞
⎠ (26.2-10d)
CV,vib
d
dT
(
Nhν
ehν/kBT− 1
)
Nhν
(ehν/kBT−1)^2
ehν/kBT
(
hν
kBT^2
)
NkB
(
hν
kBT
) 2
ehν/kBT
(ehν/kBT−1)^2
NkB
(
hν
kBT
) 2
ehν/kBT
(ehν/kBT−1)^2
CV,vibNkB
(
hcν ̃
kBT
) 2
ehcν/k ̃ BT
(ehc ̃ν/kBT−1)^2
(
diatomic
substances
)
(26.2-10e)
CV,vibNkB
3 n∑−5(6)
i 1
(
hc ̃νi
kBT
) 2
ehcν ̃i/kBT
(ehcν ̃i/kBT−1)^2
(
polyatomic
substances
)
(26.2-10f )
The heat capacity at constant pressure is given by Eq. (26.1-19). We add the termNkB
to the translational contribution. The other contributions toCPare the same as the
contributions toCV.
CP,trCV,tr+NkB
5
2
NkB
5
2
nR (26.2-10g)