26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1093
The Heat Capacity of a Dilute Gas
The heat capacity at constant volume is given by Eq. (26.1-13), but it is easier to
differentiate the formulas for the internal energy.CV,tr(
∂Utr
∂T)
V,N3
2
NkB3
2
nR (26.2-10a)CV,el(
∂Uel
∂T)
N≈0 (most substances) (26.2-10b)CV,rot(
∂Urot
∂T)
NNkBnR⎛
⎝
diatomic or linear
polyatomic
substances⎞
⎠ (26.2-10c)CV,rot(
∂Urot
∂T)
N3
2
NkB3
2
nR⎛
⎝
nonlinear
polyatomic
substances⎞
⎠ (26.2-10d)CV,vibd
dT(
Nhν
ehν/kBT− 1)
Nhν
(ehν/kBT−1)^2ehν/kBT(
hν
kBT^2)
NkB(
hν
kBT) 2
ehν/kBT
(ehν/kBT−1)^2NkB(
hν
kBT) 2
ehν/kBT
(ehν/kBT−1)^2CV,vibNkB(
hcν ̃
kBT) 2
ehcν/k ̃ BT
(ehc ̃ν/kBT−1)^2(
diatomic
substances)
(26.2-10e)CV,vibNkB3 n∑−5(6)i 1(
hc ̃νi
kBT) 2
ehcν ̃i/kBT
(ehcν ̃i/kBT−1)^2(
polyatomic
substances)
(26.2-10f )The heat capacity at constant pressure is given by Eq. (26.1-19). We add the termNkB
to the translational contribution. The other contributions toCPare the same as the
contributions toCV.CP,trCV,tr+NkB5
2
NkB5
2
nR (26.2-10g)