26.2 Working Equations for the Thermodynamic Functions of a Dilute Gas 1097
Solution
ztr
(
2 πmkBT
h^2
) 3 / 2
V
(
2 π(1. 16134 × 10 −^25 kg)(1. 3807 × 10 −^23 JK−^1 )(298.15 K)
(6. 6261 × 10 −^34 Js)^2
) 3 / 2
(0.02479 m^3 )
1. 4028 × 1031
ztr
N
1. 4028 × 1031
6. 022 × 1023
2. 329 × 107
The rotational partition function was already calculated in Example 25.7:
zrot 424. 7
The vibrational partition function was already calculated in Example 25.8:
zvib 1. 072
zel≈ 1. 000
zztrzrotzvibzel(1. 4028 × 1031 )(424.7)(1.072)(1.000) 6. 3867 × 1033
z
N
6. 3867 × 1033
6. 02214 × 1023
1. 0605 × 1010
U◦m,tr
3
2
RT(1.500 mol)(8.3145 J K−^1 mol−^1 )(298.15 K) 3718 .45 J mol−^1
Um,rot◦ RT(1.000 mol)(8.3145 J K−^1 mol−^1 )(298.15 K) 2478 .97 J mol−^1
Um,vib◦
NAvhν
ehν/kBT− 1
NAvhcν ̃
ehcν/k ̃ BT− 1
481 .92 J mol−^1
Um,el◦ ≈ 0
Um◦ 3718 .45 J mol−^1 + 2478 .97 J mol−^1 + 481 .92 J mol−^1
6679. 34 .42 J mol−^1
6 .67934 kJ mol−^1
Hm◦Um◦+PVmUm◦+RT 6679 .34 J mol−^1 + 2478 .97 J mol−^1
9158 .31 J mol−^1 9 .15831 kJ mol−^1
These values are relative to the ground-state energy. The experimental value of H◦mis
9.181 kJ mol−^1 relative to this zero of energy.
Sm,tr◦ (8.3145 J K−^1 mol−^1 )
(
9. 2100 +
5
2
ln( 298. 15 )+
3
2
ln( 0. 0699375 )+ln(1)
)
161 .831 J K−^1 mol−^1
Sm,rot◦
Um, rot
T
+Rln(zrot)R+Rln(zrot)
8 .3145 J K−^1 mol−^1 +(8.3145 J K−^1 mol−^1 )ln(424.7) 58 .627 J K−^1 mol−^1