1098 26 Equilibrium Statistical Mechanics. II. Statistical Thermodynamics
Sm,vib◦
Um,vib
T
+Rln(zvib)
481 .92 J mol−^1
298 .15 K
+(8.3145 J K−^1 mol−^1 )ln(1.072) 2 .194 J K−^1 mol−^1
Sm,el◦
Um◦,el
T
+Rln(zel)≈ 0 + 0 0
S◦m 161 .831 J K−^1 mol−^1 + 58 .627 J K−^1 mol−^1 + 2 .194 J K−^1 mol−^1
222 .652 J K−^1 mol−^1
The experimental value is 223.079 J K−^1 mol−^1.
C◦V,m,tr
3
2
R 12 .4718 J K−^1 mol−^1
C◦V,m,rotR 8 .3145 J K−^1 mol−^1
C◦V,m,vibR
(
hν
kBT
) 2
ehν/kBT
(ehν/kBT−1)^2
Rx^2
ex
(ex−1)^2
4 .680 J K−^1 mol−^1
C◦V,mel≈ 0
CV,m◦ 25 .466 J K−^1 mol−^1
C◦P,m 25 .466 J K−^1 mol−^1 + 8 .3145 J K−^1 mol−^1 33 .780 J K−^1 mol−^1
The experimental value is 33.949 J K−^1 mol−^1 at this temperature. The discrepancies between
our values and the experimental values are presumably due to the inadequacy of the harmonic
oscillator–rigid rotor energy level expression.
The Helmholtz Energy of a Dilute Gas
The contributions to the Helmholtz energy are given by the formulas
Atr−NkBTln
(
Ztr
N
)
−NkBT (26.2-16a)
Arot−NkBTln(Zrot) (26.2-16b)
Avib−NkBln(Zvib) (26.2-16c)
Aelec−NkBln(Zelec) (26.2-16d)
where we place the divisorNand the termNkBTwith the translational contribution.
EXAMPLE26.9
Find the vibrational contributions to the thermodynamic energy, Helmholtz energy,
and entropy of 1.000 mole of water vapor at 1.00 atm and 100◦C. There are three
vibrational normal modes, with frequencies 1.0947× 1014 s−^1 ,4. 7817 × 1013 s−^1 , and
1. 1260 × 1014 s−^1.