Physical Chemistry Third Edition

(C. Jardin) #1

18.5 Angular Momentum in the Helium Atom 777


ThêL^2 and̂S^2 operators are not easy to use, and we will not operate explicitly with
them.^2 We will work with thêLzand̂Szoperators, and will deduce values ofLand
Sfrom theMLandMSvalues. We can find the values ofMLandMSsince thez
components of the one-electron operators add algebraically as in Eqs. (18.5-11) and
(18.5-13). For two electrons
MLm 1 +m 2 (18.5-14a)
and
MSms 1 +ms 2 (18.5-14b)

EXAMPLE18.2

Find the values of the quantum numbersMLandMSfor each of the wave functions in
Eq. (18.4-2) for the (1s)(2s) configuration of the helium atom.
Solution

̂LzΨ 1 (̂lz 1 +̂lz 2 )Ψ 1 √^1
2

[̂lz 1 ψ 1 s(1)ψ 2 s(2)−ψ 2 s(1)(̂lz 2 ψ 1 s(2))]α(1)α(2)

 0 + 0  0 (18.5-15)

so thatML0. The other wave functions also contain onlysorbitals, so thatML0 for
all of them. We operate witĥSzto find the value ofMS.

̂SzΨ 1 (̂sz 1 +̂sz 2 )Ψ 1


1

2

(
ψ 1 s(1)ψ 1 s(2)−ψ 1 s(1)ψ 1 s(2)

)(
̂sz 1 α(1)α(2)+α(1)̂sz 2 α(2)

)


1

2

(
ψ 1 s(1)ψ 1 s(2)−ψ 1 s(1)ψ 1 s(2)

)
(
h ̄
2
α(1)α(2)+α(1) ̄
h
2
α(2)

)



(
h ̄
2

+ ̄
h
2

)
Ψ 1  ̄hΨ 1 (18.5-16)

so thatΨ 1 corresponds toMS1. Similarly,

̂SzΨ 2 

(
− ̄
h
2
− ̄
h
2

)
Ψ 2 −h ̄Ψ 2 (18.5-17)

so thatMS−1 forΨ 2.

̂SzΨ 3 ^1
2
[ψ 1 s(1)ψ 2 s(2)−ψ 2 s(1)ψ 1 s(2)]

×[̂sz 1 α(1)β(2)+̂sz 1 β(1)α(2)+α(1)̂sz 2 β(2)+β(1)̂sz 2 α(2)]



1
2
[ψ 1 s(1)ψ 2 s(2)−ψ 2 s(1)ψ 1 s(2)]

×

[(
h ̄
2

)
α(1)β(2)+

(
−h ̄
2

)
β(1)α(2)+α(1)

(
−h ̄
2

)
β(2)+β(1)

(
h ̄
2

)
α(2)

]

 0 (18.5-18)

(^2) I. N. Levine,op. cit., p. 318ff (note 1).

Free download pdf