19.3 The Perturbation Method and Its Application to the Ground State of the Helium Atom 801
ψ 1 (0)√
2
2 a
sin(
π(x+a)
2 a)
; E(0) 1
h^2
8 m(2a^2 )
h^2
32 ma^2E(1) 1
1
a∫a−akx^2
2sin^2(
π(x+a)
2 a)
dxFrom a trigonometric identity,sin(πx
2 a
+
π
2)
sin(πx/ 2 a)cos(π/2)+cos(πx/ 2 a)sin(π/2) 0 +cos(πx/ 2 a)E(1) 1
k
2 a∫a−ax^2 cos^2 (πx/ 2 a)dx
k
2 a(
2 a
π) 3 π/∫^2−π/ 2y^2 cos^2 (y)dy, wherey
πx
2 a
8 k
π^3a^2π/∫ 20y^2 cos^2 (y)dywhere we have used the fact that the integral from−π/2toπ/2 is twice as large as the integral
from 0 toπ/2, since the integrand is an even function ofy, having the same value for−yas
fory. This integral can be looked up to giveE(1) 1
8 k
π^3a^2[
y^3
6
+(
y^2
4
−
1
8)
sin(2y)+
ycos(2y)
4]π/ 20
8 k
π^3a^2(
π^3
48
+ 0 −
π
8)
ka^2
6−
ka^2
π^2EE(0) 1 +E(1) 1
h^2
32 ma^2+ka^2(
1
6
−
1
π^2)
h^2
32 ma^2+(0.06535)ka^2Exercise 19.3
EvaluateE(0) 1 andE(1) 1 from the previous example in the case thatmis the mass of an electron,
9. 1094 × 10 −^31 kg,a 10 .0Å 1 .00 nm, andk 0 .0500 J m−^2.We now apply the perturbation method to the ground state of the helium atom. The
zero-order Hamiltonian is a sum of two hydrogen-like Hamiltonians:̂H(0)ĤHL(1)+ĤHL(2) (19.3-9)
The perturbation term isĤ′ e2
4 πε 0 r 12