Surds, indices, and exponentials (Chapter 4) 109
Example 10 Self Tutor
Write as powers of 2 :
a 16 b 161 c 1 d 4 £ 2 n e
2 m
8
a 16
=2£ 2 £ 2 £ 2
=2^4
b 161
=
1
24
=2¡^4
c 1
=2^0
d 4 £ 2 n
=2^2 £ 2 n
=22+n
e
2 m
8
=
2 m
23
=2m¡^3
2 Write as powers of 2 :
a 4 b^14 c 8 d^18 e 32 f 321
g 2 h^12 i 64 j 641 k 128 l 1281
3 Write as powers of 3 :
a 9 b^19 c 27 d 271 e 3 f^13
g 81 h 811 i 1 j 243 k 2431
4 Write as a single power of 2 :
a 2 £ 2 a b 4 £ 2 b c 8 £ 2 t d (2x+1)^2 e (2^1 ¡n)¡^1
f
2 c
4
g
2 m
2 ¡m
h
4
21 ¡n
i
2 x+1
2 x
j
4 x
21 ¡x
5 Write as a single power of 3 :
a 9 £ 3 p b 27 a c 3 £ 9 n d 27 £ 3 d e 9 £ 27 t
f
3 y
3
g
3
3 y
h
9
27 t
i
9 a
31 ¡a
j
9 n+1
32 n¡^1
Example 11 Self Tutor
Write in simplest form, without brackets:
a
¡
¡ 3 a^2
¢ 4
b
μ
¡
2 a^2
b
¶ 3
a
¡
¡ 3 a^2
¢ 4
=(¡3)^4 £(a^2 )^4
=81£a^2 £^4
=81a^8
b
μ
¡^2 a
2
b
¶ 3
=(¡2)
(^3) £(a (^2) ) 3
b^3
¡ 8 a^6
b^3
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\109CamAdd_04.cdr Tuesday, 14 January 2014 2:28:15 PM BRIAN