Cambridge Additional Mathematics

(singke) #1
Surds, indices, and exponentials (Chapter 4) 109

Example 10 Self Tutor


Write as powers of 2 :

a 16 b 161 c 1 d 4 £ 2 n e
2 m
8

a 16
=2£ 2 £ 2 £ 2
=2^4

b 161

=
1
24
=2¡^4

c 1
=2^0

d 4 £ 2 n
=2^2 £ 2 n
=22+n

e
2 m
8

=
2 m
23
=2m¡^3

2 Write as powers of 2 :
a 4 b^14 c 8 d^18 e 32 f 321
g 2 h^12 i 64 j 641 k 128 l 1281

3 Write as powers of 3 :
a 9 b^19 c 27 d 271 e 3 f^13
g 81 h 811 i 1 j 243 k 2431

4 Write as a single power of 2 :
a 2 £ 2 a b 4 £ 2 b c 8 £ 2 t d (2x+1)^2 e (2^1 ¡n)¡^1

f
2 c
4
g
2 m
2 ¡m
h
4
21 ¡n
i
2 x+1
2 x
j
4 x
21 ¡x

5 Write as a single power of 3 :
a 9 £ 3 p b 27 a c 3 £ 9 n d 27 £ 3 d e 9 £ 27 t

f
3 y
3
g
3
3 y
h
9
27 t
i
9 a
31 ¡a
j
9 n+1
32 n¡^1

Example 11 Self Tutor


Write in simplest form, without brackets:

a

¡
¡ 3 a^2

¢ 4
b

μ
¡
2 a^2
b

¶ 3

a

¡
¡ 3 a^2

¢ 4

=(¡3)^4 £(a^2 )^4
=81£a^2 £^4
=81a^8

b

μ
¡^2 a

2
b

¶ 3

=(¡2)

(^3) £(a (^2) ) 3
b^3


¡ 8 a^6
b^3
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\109CamAdd_04.cdr Tuesday, 14 January 2014 2:28:15 PM BRIAN

Free download pdf