Surds, indices, and exponentials (Chapter 4) 109Example 10 Self Tutor
Write as powers of 2 :a 16 b 161 c 1 d 4 £ 2 n e
2 m
8a 16
=2£ 2 £ 2 £ 2
=2^4b 161=
1
24
=2¡^4c 1
=2^0d 4 £ 2 n
=2^2 £ 2 n
=22+ne
2 m
8=
2 m
23
=2m¡^32 Write as powers of 2 :
a 4 b^14 c 8 d^18 e 32 f 321
g 2 h^12 i 64 j 641 k 128 l 12813 Write as powers of 3 :
a 9 b^19 c 27 d 271 e 3 f^13
g 81 h 811 i 1 j 243 k 24314 Write as a single power of 2 :
a 2 £ 2 a b 4 £ 2 b c 8 £ 2 t d (2x+1)^2 e (2^1 ¡n)¡^1f
2 c
4
g
2 m
2 ¡m
h
4
21 ¡n
i
2 x+1
2 x
j
4 x
21 ¡x5 Write as a single power of 3 :
a 9 £ 3 p b 27 a c 3 £ 9 n d 27 £ 3 d e 9 £ 27 tf
3 y
3
g
3
3 y
h
9
27 t
i
9 a
31 ¡a
j
9 n+1
32 n¡^1Example 11 Self Tutor
Write in simplest form, without brackets:a¡
¡ 3 a^2¢ 4
bμ
¡
2 a^2
b¶ 3a¡
¡ 3 a^2¢ 4=(¡3)^4 £(a^2 )^4
=81£a^2 £^4
=81a^8bμ
¡^2 a2
b¶ 3=(¡2)(^3) £(a (^2) ) 3
b^3
¡ 8 a^6
b^3
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\109CamAdd_04.cdr Tuesday, 14 January 2014 2:28:15 PM BRIAN