Cambridge Additional Mathematics

(singke) #1
110 Surds, indices, and exponentials (Chapter 4)

6 Write without brackets:

a (2a)^2 b (3b)^3 c (ab)^4 d (pq)^3 e

³m
n

́ 2

f

³
a
3

́ 3
g

³
b
c

́ 4
h

³
2 a
b

́ 0
i

³
m
3 n

́ 4
j

³
xy
2

́ 3

7 Write the following in simplest form, without brackets:
a (¡ 2 a)^2 b (¡ 6 b^2 )^2 c (¡ 2 a)^3 d (¡ 3 m^2 n^2 )^3

e (¡ 2 ab^4 )^4 f

μ
¡ 2 a^2
b^2

¶ 3
g

μ
¡ 4 a^3
b

¶ 2
h

μ
¡ 3 p^2
q^3

¶ 2

i
(2x^2 y)^2
x
j
(4a^2 b)^3
2 ab^2
k
(¡ 5 a^6 b^3 )^2
5 b^8
l
(¡ 2 x^7 y^4 )^3
4 x^3 y^15

Example 12 Self Tutor


Write without negative exponents:
a¡^3 b^2
c¡^1

a¡^3 =^1
a^3

and^1
c¡^1

=c^1

)
a¡^3 b^2
c¡^1
=
b^2 c
a^3

8 Write without negative exponents:

a ab¡^2 b (ab)¡^2 c (2ab¡^1 )^2 d (3a¡^2 b)^2 e a

(^2) b¡ 1
c^2
f
a^2 b¡^1
c¡^2
g
1
a¡^3
h
a¡^2
b¡^3
i
2 a¡^1
d^2
j
12 a
m¡^3


Example 13 Self Tutor


Write
1
21 ¡n
in non-fractional form.

1
21 ¡n
=2¡(1¡n)
=2¡1+n
=2n¡^1

9 Write in non-fractional form:

a^1
an

b^1
b¡n

c^1
32 ¡n

d a

n
b¡m

e a

¡n
a2+n
10 Simplify, giving your answers in simplest rational form:

a

¡ 5
3

¢ 0
b

¡ 7
4

¢¡ 1
c

¡ 1
6

¢¡ 1
d
33
30

e

¡ 4
3

¢¡ 2
f 21 +2¡^1 g

¡

(^123)
¢¡ 3
h 52 +5^1 +5¡^1
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_04\110CamAdd_04.cdr Tuesday, 14 January 2014 2:28:18 PM BRIAN

Free download pdf