110 Surds, indices, and exponentials (Chapter 4)
6 Write without brackets:
a (2a)^2 b (3b)^3 c (ab)^4 d (pq)^3 e
³m
n
́ 2
f
³
a
3
́ 3
g
³
b
c
́ 4
h
³
2 a
b
́ 0
i
³
m
3 n
́ 4
j
³
xy
2
́ 3
7 Write the following in simplest form, without brackets:
a (¡ 2 a)^2 b (¡ 6 b^2 )^2 c (¡ 2 a)^3 d (¡ 3 m^2 n^2 )^3
e (¡ 2 ab^4 )^4 f
μ
¡ 2 a^2
b^2
¶ 3
g
μ
¡ 4 a^3
b
¶ 2
h
μ
¡ 3 p^2
q^3
¶ 2
i
(2x^2 y)^2
x
j
(4a^2 b)^3
2 ab^2
k
(¡ 5 a^6 b^3 )^2
5 b^8
l
(¡ 2 x^7 y^4 )^3
4 x^3 y^15
Example 12 Self Tutor
Write without negative exponents:
a¡^3 b^2
c¡^1
a¡^3 =^1
a^3
and^1
c¡^1
=c^1
)
a¡^3 b^2
c¡^1
=
b^2 c
a^3
8 Write without negative exponents:
a ab¡^2 b (ab)¡^2 c (2ab¡^1 )^2 d (3a¡^2 b)^2 e a
(^2) b¡ 1
c^2
f
a^2 b¡^1
c¡^2
g
1
a¡^3
h
a¡^2
b¡^3
i
2 a¡^1
d^2
j
12 a
m¡^3
Example 13 Self Tutor
Write
1
21 ¡n
in non-fractional form.
1
21 ¡n
=2¡(1¡n)
=2¡1+n
=2n¡^1
9 Write in non-fractional form:
a^1
an
b^1
b¡n
c^1
32 ¡n
d a
n
b¡m
e a
¡n
a2+n
10 Simplify, giving your answers in simplest rational form:
a
¡ 5
3
¢ 0
b
¡ 7
4
¢¡ 1
c
¡ 1
6
¢¡ 1
d
33
30
e
¡ 4
3
¢¡ 2
f 21 +2¡^1 g
¡
(^123)
¢¡ 3
h 52 +5^1 +5¡^1
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_04\110CamAdd_04.cdr Tuesday, 14 January 2014 2:28:18 PM BRIAN