Surds, indices, and exponentials (Chapter 4) 113
5 Without using a calculator, write in simplest rational form:
a 4
3
(^2) b 8
5
(^3) c 16
3
(^4) d 25
3
(^2) e 32
2
5
f 4
¡^12
g 9
¡^32
h 8
¡^43
i 27
¡^43
j 125
¡^23
EXPANSION
We can use the usual expansion laws to simplify expressions containing indices:
a(b+c)=ab+ac
(a+b)(c+d)=ac+ad+bc+bd
(a+b)(a¡b)=a^2 ¡b^2
(a+b)^2 =a^2 +2ab+b^2
(a¡b)^2 =a^2 ¡ 2 ab+b^2
Example 16 Self Tutor
Expand and simplify: x
¡^12
(x
3
(^2) +2x
1
(^2) ¡ 3 x¡
1
(^2) )
x
¡^12
(x
3
(^2) +2x
1
(^2) ¡ 3 x¡
1
(^2) )
=x
¡^12
£x
3
(^2) +x¡
1
(^2) £ 2 x
1
(^2) ¡x¡
1
(^2) £ 3 x¡
1
(^2) feach term is£ byx¡
1
(^2) g
=x^1 +2x^0 ¡ 3 x¡^1 fadding exponentsg
=x+2¡^3
x
Example 17 Self Tutor
Expand and simplify:
a (2x+ 3)(2x+1) b (7x+7¡x)^2
a (2x+ 3)(2x+1)
=2x£ 2 x+2x+3£ 2 x+3
=2^2 x+4£ 2 x+3
=4x+22+x+3
b (7x+7¡x)^2
=(7x)^2 +2£ 7 x£ 7 ¡x+(7¡x)^2
=7^2 x+2£ 70 +7¡^2 x
=7^2 x+2+7¡^2 x
EXERCISE 4E.1
1 Expand and simplify:
a x^2 (x^3 +2x^2 +1) b 2 x(2x+1) c x
1
(^2) (x
1
(^2) +x¡
1
(^2) )
d 7 x(7x+2) e 3 x(2¡ 3 ¡x) f x
1
(^2) (x
3
(^2) +2x
1
(^2) +3x¡
1
(^2) )
g 2 ¡x(2x+5) h 5 ¡x(5^2 x+5x) i x
¡^12
(x^2 +x+x
1
(^2) )
E Algebraic expansion and factorisation
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\113CamAdd_04.cdr Tuesday, 14 January 2014 2:28:26 PM BRIAN